Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Targeted genome modifcation in protoplasts of a highly regenerable Siberian barley cultivar using RNA-guided Cas9 endonuclease

https://doi.org/10.18699/VJ18.447

Abstract

The modifcation of crop genomes employing functional components of the microbial CRISPR/Cas immune system is a rapidly developing area of applied research. Site-directed plant genome modifcation by this technology involves the construction of Cas endonuclease- and guide-RNA-encoding vectors, delivery of the plasmid DNA into plant cells, processing of the chosen genomic target site by the corresponding gene products and regeneration of plants from modifed cells. The utilization of this technology in local breeding programs is mainly limited by the typically strong genotype dependence of gene transfer and in vitro regeneration procedures, which holds particularly true in cereals. In the present study, an evaluation of in vitro regeneration efciency of immature embryos of ten Siberian barley cultivars revealed that only one of these is on a par with the experimental standard cultivar Golden Promise. This cultivar, namely cv. Aley, was consequently chosen for further experiments on site-directed mutagenesis in leaf mesophyll protoplasts. Two genes controlling hulled vs naked (Nud) and two-rowed vs six-rowed barley (Vrs1) were used as targets to be modifed via polyethyleneglycol-mediated cellular uptake of guide-RNA/Cas9-encoding plasmid DNA. Deep-sequencing of amplicons obtained from protoplast genomic DNA revealed that 6 to 22 percent of the target sites were mutated. The detected modifcations comprised deletions in all three target sites and of various sizes, whereas insertions were observed in only one of the target genes (Vrs1) and were confned to the size of 1 nucleotide. This study demonstrates the possibility of site-directed genome modifcation in Siberian barley. Further steps in technology advancement will require the development of protocols with reduced genotype dependence in terms of both the gene transfer to totipotent cells and the subsequent plant regeneration originating from such cells.

About the Authors

S. V. Gerasimova
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


A. M. Korotkova
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


C. Hertig
Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK)
Germany
Gatersleben


S. Hiekel
Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK)
Germany
Gatersleben


R. Hofe
Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK)
Germany
Gatersleben


N. Budhagatapalli
Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK)
Germany
Gatersleben


I. Otto
Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK)
Germany
Gatersleben


G. Hensel
Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK)
Germany
Gatersleben


V. K. Shumny
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


A. V. Kochetov
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


J. Kumlehn
Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK)
Germany
Gatersleben


E. K. Khlestkina
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University; N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR)
Russian Federation
Novosibirsk, St. Petersburg


References

1. Bai Y., Han N., Wu J., Yang Y., Wang J., Zhu M., Bian H. A transient gene expression system using barley protoplasts to evaluate microRNAs for post-transcriptional regulation of their target genes. Plant Cell Tiss. Organ Cult. (PCTOC). 2014;119(1):211-219. DOI 10.1007/s11240-014-0527-z.

2. Budhagatapalli N., Schedel S., Gurushidze M., Pencs S., Hiekel S., Rutten T., Kusch S., Morbitzer R., Lahaye T., Panstruga R., Kumlehn J., Hensel G. A simple test for the cleavage activity of customized endonucleases in plants. Plant Methods. 2016;12:18. DOI 10.1186/s13007-016-0118-6.

3. Doench J.G., Fusi N., Sullender M., Hegde M., Vaimberg E.W., Donovan K.F., Smith I., Tothova Z., Wilen C., Orchard R., Virgin H.W., Listgarten J., Root D.E. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 2016;34(2):184-191. DOI 10.1038/nbt.3437.

4. Fang Y.D., Akula C., Altpeter F. Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA::barley genomic DNA junctions. J. Plant Physiol. 2002;159:1131-1138. DOI 10.1078/0176-1617-00707.

5. Gerasimova S.V., Khlestkina E.K., Kochetov A.V., Shumny V.K. Genome editing system CRISPR/Cas9 and peculiarities of its application in monocots. Russ. J. Plant Physiol. 2017;64(2):141-155. DOI 10.1134/S1021443717010071.

6. Gibson D.G., Young L., Chuang R.Y., Venter J.C., Hutchison C.A. 3rd, Smith H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods. 2009;6:343-345. DOI 10.1038/nmeth.1318.

7. Gruber A.R., Lorenz R., Bernhart S.H., Neuböck R., Hofacker I.L. The Vienna RNA websuite. Nucleic Acids Res. 2008;36(Web Server issue):W70-W74. DOI 10.1093/nar/gkn188.

8. Harwood W.A., Bartlett J.G., Alves S.C., Perry M., Smedley M.A., Leyland N., Snape J.W. Barley transformation using Agrobacteriummediated techniques. Methods Mol. Biol. 2009;478:137-147. DOI 10.1007/978-1-59745-379-0_9.

9. Hisano H., Meints B., Moscou M.J., Cistue L., Echávarri B., Sato K., Hayes P.M. Selection of transformation-effcient barley genotypes based on TFA (transformation amenability) haplotype and higher resolution mapping of the TFA loci. Plant Cell Rep. 2017;36(4):611- 620. DOI 10.1007/s00299-017-2107-2.

10. Holme I.B., Wendt T., Gil-Humanes J., Deleuran L.C., Starker C.G., Voytas D.F., Brinch-Pedersen H. Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Mol. Biol. 2017;95(1-2):111- 121. DOI 10.1007/s11103-017-0640-6.

11. Holubova K., Hensel G., Vojta P., Tarkowski P., Bergougnoux V., Galuszka P. Modifcation of barley plant productivity through regulation of cytokinin content by reverse-genetics approaches. Front. Plant Sci. 2018;9:1676. DOI 10.3389/FPLS.2018.01676.

12. Kapusi E., Corcuera-Gómez M., Melnik S., Stoger E. Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front. Plant Sci. 2017;8:540. DOI 10.3389/fpls.2017.00540.

13. Korotkova A.M., Gerasimova S.V., Khlestkina E.K. Current achievements in modifying crop genes using CRISPR/Cas system. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019. (In press).

14. Korotkova A.M., Gerasimova S.V., Shumny V.K., Khlestkina E.K. Crop genes modifed using the CRISPR/Cas system. Russ. J. Genet.: Appl. Res. 2017;7(8). DOI 10.1134/S2079059717050124.

15. Kumar N., Galli M., Ordon J., Stuttmann J., Kogel K.H., Imani J. Further analysis of barley MORC1 using a highly effcient RNA-guided Cas9 gene-editing system. Plant Biotechnol. J. 2018;16(11):1892- 1903. DOI 10.1111/pbi.12924.

16. Kumlehn J., Hensel G. Genetic transformation technology in the Triticeae. Breed. Sci. 2009;59:553-560. DOI 10.1270/jsbbs.59.553.

17. Lin C.S., Hsu C.T., Yang L.H., Lee L.Y., Fu J.Y., Cheng Q.W., Wu F.H., Hsiao H.C.W., Zhang Y., Zhang R., Chang W.J., Yu C.T., Wang W., Liao L.J., Genvin S.B., Shih M.C. Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol. J. 2018;16(7): 1295-1310. DOI 10.1111/pbi.12870.

18. Lowe K., La Rota M., Hoerster G., Hastings C., Wang N., Chamberlin M., Wu E., Jones T., Gordon-Kamm W. Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cell. Dev. Biol. Plant. 2018;54(3):240-252. DOI 10.1007/s11627-018-9905-2.

19. Lowe K., Wu E., Wang N., Hoerster G., Hastings C., Cho M.J., Scelonge C., Lenderts B., Chamberlin M., Cushatt J., Wang L., Ryan L., Khan T., Chow-Yiu J., Hua W., Yu M., Banh J., Bao Z., Brink K., Igo E., Rudrappa B., Shamseer P.M., Bruce W., Newman L., Shen B., Zheng P., Bidney D., Falco C., Register J., Zhao Z.Y., Xu D., Jones T., Gordon-Kamm W. Morphogenic regulators Baby boom and Wuschel improve Monocot transformation. Plant Cell. 2016;28(9):1998-2015. DOI 10.1105/tpc.16.00124.

20. Pourkheirandish M., Hensel G., Kilian B., Senthil N., Chen G., Sameri M., Azhaguvel P., Sakuma S., Dhanagond S., Sharma R., Mascher M., Himmelbach A., Gottwald S., Nair S.K., Tagiri A., Yukuhiro F., Nagamura Y., Kanamori H., Komatsuda T. Evolution of the grain dispersal system in barley. Cell. 2015;162(3):527-539. DOI 10.1016/J.CELL.2015.07.002.

21. Shan Q., Wang Y., Li J., Gao C. Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protoc. 2014;9(10):2395-2410. DOI 10.1038/nprot.2014.157.

22. Taketa S., Amano S., Tsujino Y., Sato T., Saisho D., Kakeda K., Nomura M., Suzuki T., Matsumoto T., Sato K., Kanamori H., Kawasaki S., Takeda K. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc. Natl. Acad. Sci. USA. 2008;105(10):4062-4067. DOI 10.1073/pnas.0711034105.

23. Wang W., Akhunova A., Chao S., Akhunov E. Optimizing multiplex CRISPR/Cas9-based genome editing for wheat. BioRxiv. DOI 10.1101/051342.

24. Wong N., Liu W., Wang X. WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol. 2015;16: 218. DOI 10.1186/s13059-015-0784-0.


Review

Views: 1907


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)