Targeted genome modifcation in protoplasts of a highly regenerable Siberian barley cultivar using RNA-guided Cas9 endonuclease
https://doi.org/10.18699/VJ18.447
Abstract
The modifcation of crop genomes employing functional components of the microbial CRISPR/Cas immune system is a rapidly developing area of applied research. Site-directed plant genome modifcation by this technology involves the construction of Cas endonuclease- and guide-RNA-encoding vectors, delivery of the plasmid DNA into plant cells, processing of the chosen genomic target site by the corresponding gene products and regeneration of plants from modifed cells. The utilization of this technology in local breeding programs is mainly limited by the typically strong genotype dependence of gene transfer and in vitro regeneration procedures, which holds particularly true in cereals. In the present study, an evaluation of in vitro regeneration efciency of immature embryos of ten Siberian barley cultivars revealed that only one of these is on a par with the experimental standard cultivar Golden Promise. This cultivar, namely cv. Aley, was consequently chosen for further experiments on site-directed mutagenesis in leaf mesophyll protoplasts. Two genes controlling hulled vs naked (Nud) and two-rowed vs six-rowed barley (Vrs1) were used as targets to be modifed via polyethyleneglycol-mediated cellular uptake of guide-RNA/Cas9-encoding plasmid DNA. Deep-sequencing of amplicons obtained from protoplast genomic DNA revealed that 6 to 22 percent of the target sites were mutated. The detected modifcations comprised deletions in all three target sites and of various sizes, whereas insertions were observed in only one of the target genes (Vrs1) and were confned to the size of 1 nucleotide. This study demonstrates the possibility of site-directed genome modifcation in Siberian barley. Further steps in technology advancement will require the development of protocols with reduced genotype dependence in terms of both the gene transfer to totipotent cells and the subsequent plant regeneration originating from such cells.
Keywords
About the Authors
S. V. GerasimovaRussian Federation
Novosibirsk
A. M. Korotkova
Russian Federation
Novosibirsk
C. Hertig
Germany
Gatersleben
S. Hiekel
Germany
Gatersleben
R. Hofe
Germany
Gatersleben
N. Budhagatapalli
Germany
Gatersleben
I. Otto
Germany
Gatersleben
G. Hensel
Germany
Gatersleben
V. K. Shumny
Russian Federation
Novosibirsk
A. V. Kochetov
Russian Federation
Novosibirsk
J. Kumlehn
Germany
Gatersleben
E. K. Khlestkina
Russian Federation
Novosibirsk, St. Petersburg
References
1. Bai Y., Han N., Wu J., Yang Y., Wang J., Zhu M., Bian H. A transient gene expression system using barley protoplasts to evaluate microRNAs for post-transcriptional regulation of their target genes. Plant Cell Tiss. Organ Cult. (PCTOC). 2014;119(1):211-219. DOI 10.1007/s11240-014-0527-z.
2. Budhagatapalli N., Schedel S., Gurushidze M., Pencs S., Hiekel S., Rutten T., Kusch S., Morbitzer R., Lahaye T., Panstruga R., Kumlehn J., Hensel G. A simple test for the cleavage activity of customized endonucleases in plants. Plant Methods. 2016;12:18. DOI 10.1186/s13007-016-0118-6.
3. Doench J.G., Fusi N., Sullender M., Hegde M., Vaimberg E.W., Donovan K.F., Smith I., Tothova Z., Wilen C., Orchard R., Virgin H.W., Listgarten J., Root D.E. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 2016;34(2):184-191. DOI 10.1038/nbt.3437.
4. Fang Y.D., Akula C., Altpeter F. Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA::barley genomic DNA junctions. J. Plant Physiol. 2002;159:1131-1138. DOI 10.1078/0176-1617-00707.
5. Gerasimova S.V., Khlestkina E.K., Kochetov A.V., Shumny V.K. Genome editing system CRISPR/Cas9 and peculiarities of its application in monocots. Russ. J. Plant Physiol. 2017;64(2):141-155. DOI 10.1134/S1021443717010071.
6. Gibson D.G., Young L., Chuang R.Y., Venter J.C., Hutchison C.A. 3rd, Smith H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods. 2009;6:343-345. DOI 10.1038/nmeth.1318.
7. Gruber A.R., Lorenz R., Bernhart S.H., Neuböck R., Hofacker I.L. The Vienna RNA websuite. Nucleic Acids Res. 2008;36(Web Server issue):W70-W74. DOI 10.1093/nar/gkn188.
8. Harwood W.A., Bartlett J.G., Alves S.C., Perry M., Smedley M.A., Leyland N., Snape J.W. Barley transformation using Agrobacteriummediated techniques. Methods Mol. Biol. 2009;478:137-147. DOI 10.1007/978-1-59745-379-0_9.
9. Hisano H., Meints B., Moscou M.J., Cistue L., Echávarri B., Sato K., Hayes P.M. Selection of transformation-effcient barley genotypes based on TFA (transformation amenability) haplotype and higher resolution mapping of the TFA loci. Plant Cell Rep. 2017;36(4):611- 620. DOI 10.1007/s00299-017-2107-2.
10. Holme I.B., Wendt T., Gil-Humanes J., Deleuran L.C., Starker C.G., Voytas D.F., Brinch-Pedersen H. Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Mol. Biol. 2017;95(1-2):111- 121. DOI 10.1007/s11103-017-0640-6.
11. Holubova K., Hensel G., Vojta P., Tarkowski P., Bergougnoux V., Galuszka P. Modifcation of barley plant productivity through regulation of cytokinin content by reverse-genetics approaches. Front. Plant Sci. 2018;9:1676. DOI 10.3389/FPLS.2018.01676.
12. Kapusi E., Corcuera-Gómez M., Melnik S., Stoger E. Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front. Plant Sci. 2017;8:540. DOI 10.3389/fpls.2017.00540.
13. Korotkova A.M., Gerasimova S.V., Khlestkina E.K. Current achievements in modifying crop genes using CRISPR/Cas system. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019. (In press).
14. Korotkova A.M., Gerasimova S.V., Shumny V.K., Khlestkina E.K. Crop genes modifed using the CRISPR/Cas system. Russ. J. Genet.: Appl. Res. 2017;7(8). DOI 10.1134/S2079059717050124.
15. Kumar N., Galli M., Ordon J., Stuttmann J., Kogel K.H., Imani J. Further analysis of barley MORC1 using a highly effcient RNA-guided Cas9 gene-editing system. Plant Biotechnol. J. 2018;16(11):1892- 1903. DOI 10.1111/pbi.12924.
16. Kumlehn J., Hensel G. Genetic transformation technology in the Triticeae. Breed. Sci. 2009;59:553-560. DOI 10.1270/jsbbs.59.553.
17. Lin C.S., Hsu C.T., Yang L.H., Lee L.Y., Fu J.Y., Cheng Q.W., Wu F.H., Hsiao H.C.W., Zhang Y., Zhang R., Chang W.J., Yu C.T., Wang W., Liao L.J., Genvin S.B., Shih M.C. Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol. J. 2018;16(7): 1295-1310. DOI 10.1111/pbi.12870.
18. Lowe K., La Rota M., Hoerster G., Hastings C., Wang N., Chamberlin M., Wu E., Jones T., Gordon-Kamm W. Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cell. Dev. Biol. Plant. 2018;54(3):240-252. DOI 10.1007/s11627-018-9905-2.
19. Lowe K., Wu E., Wang N., Hoerster G., Hastings C., Cho M.J., Scelonge C., Lenderts B., Chamberlin M., Cushatt J., Wang L., Ryan L., Khan T., Chow-Yiu J., Hua W., Yu M., Banh J., Bao Z., Brink K., Igo E., Rudrappa B., Shamseer P.M., Bruce W., Newman L., Shen B., Zheng P., Bidney D., Falco C., Register J., Zhao Z.Y., Xu D., Jones T., Gordon-Kamm W. Morphogenic regulators Baby boom and Wuschel improve Monocot transformation. Plant Cell. 2016;28(9):1998-2015. DOI 10.1105/tpc.16.00124.
20. Pourkheirandish M., Hensel G., Kilian B., Senthil N., Chen G., Sameri M., Azhaguvel P., Sakuma S., Dhanagond S., Sharma R., Mascher M., Himmelbach A., Gottwald S., Nair S.K., Tagiri A., Yukuhiro F., Nagamura Y., Kanamori H., Komatsuda T. Evolution of the grain dispersal system in barley. Cell. 2015;162(3):527-539. DOI 10.1016/J.CELL.2015.07.002.
21. Shan Q., Wang Y., Li J., Gao C. Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protoc. 2014;9(10):2395-2410. DOI 10.1038/nprot.2014.157.
22. Taketa S., Amano S., Tsujino Y., Sato T., Saisho D., Kakeda K., Nomura M., Suzuki T., Matsumoto T., Sato K., Kanamori H., Kawasaki S., Takeda K. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc. Natl. Acad. Sci. USA. 2008;105(10):4062-4067. DOI 10.1073/pnas.0711034105.
23. Wang W., Akhunova A., Chao S., Akhunov E. Optimizing multiplex CRISPR/Cas9-based genome editing for wheat. BioRxiv. DOI 10.1101/051342.
24. Wong N., Liu W., Wang X. WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol. 2015;16: 218. DOI 10.1186/s13059-015-0784-0.