Становление щетиночного узора у Drosophila melanogaster: предструктура и комплекс генов achaete-scute
https://doi.org/10.18699/VJ18.449
Аннотация
Об авторах
Д. П. ФурманРоссия
Новосибирск
Т. А. Бухарина
Россия
Новосибирск
Список литературы
1. Aegerter-Wilmsen T., Aegerter C.M., Hafen E., Basler K. Model for the regulation of size in the wing imaginal disc of Drosophila. Mech. Dev. 2007;124(4):318-326. https://doi.org/10.1016/j.mod.2006.12.005.
2. Affolter M., Basler K. The Decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nat. Rev. Genet. 2007;8(9): 663-674. https://doi.org/10.1038/nrg2166.
3. Aldaz S., Escudero L.M. Imaginal discs. Curr. Biol. 2010;20(10):R429- R431. https://doi.org/10.1016/j.cub.2010.03.010.
4. Aldaz S., Morata G., Azpiazu N. The Pax-homeobox gene eyegone is involved in the subdivision of the thorax of Drosophila. Development. 2003;130:4473-4482. https://doi.org/10.1242/dev.00643.
5. Ayyar S., Negre B., Simpson P., Stollewerk A. An arthropod cis-regulatory element functioning in sensory organ precursor development dates back to the Cambrian. BMC Biol. 2010;24:127. https://doi.org/10.1186/1741-7007-8-127.
6. Ayyar S., Pistillo D., Calleja M., Brookfeld A., Gittins K., Goldstone C., Simpson P. NF-kB/Rel-mediated regulation of the neural fate in Drosophila. PLoS One. 2007;2:e1178. https://doi.org/10.1371/journal.pone.0001178.
7. Barrios N., Campuzano S. Expanding the Iroquois genes repertoire: a non-transcriptional function in cell cycle progression. Fly (Austin). 2015;9(3):126-131. https://doi.org/10.1080/19336934.2016.1139654.
8. Barrios N., González-Pérez E., Hernández R., Campuzano S. The homeodomain Iroquois proteins control cell cycle progression and regulate the size of developmental felds. PLoS Genet. 2015;11(8): e1005463. https://doi.org/10.1371/journal.pgen.1005463.
9. Bate M., Martinez-Arias A. The embryonic origin of imaginal discs in Drosophila. Development. 1991;112(3):755-761.
10. Beira J.V., Paro R. The legacy of Drosophila imaginal discs. Chromosoma. 2016;125:573-592. https://doi.org/10.1007/s00412-016-0595-4.
11. Biryukova I., Heitzler P. The Drosophila LIM-homeo domain protein Islet antagonizes pro-neural cell specifcation in the peripheral nervous system. Dev. Biol. 2005;288:559-570. https://doi.org/10.1016/j.ydbio.2005.09.033.
12. Blair S.S. Compartments and appendage development in Drosophila. BioEssays. 1995;17(4):299-309. https://doi.org/10.1002/bies.950170406.
13. Bronstein R., Levkovitz L., Yosef N., Yanku M., Ruppin E., Sharan R., Westphal H., Oliver B., Segal D. Transcriptional regulation by CHIP/LDB complexes. PLoS Genetics. 2010;6:e1001063. https://doi.org/10.1371/journal.pgen.1001063.
14. Brook W.J. Hedgehog signaling and the axial patterning of Drosophila wings. Biochem. Cell Biol. 2000;78(5):585-591. https://doi.org/10.1139/o00-072.
15. Bukharina T.A., Furman D.P. The mechanisms determining bristle pattern in Drosophila melanogaster. Rus. J. Dev. Biol. 2015;46:99-110. https://doi.org/10.1134/S1062360415030029.
16. Calleja M., Renaud O., Usui K., Pistillo D., Morata G., Simpson P. How to pattern an epithelium: lessons from achaete-scute regulation on the notum of Drosophila. Gene. 2002;292:1-12. https://doi.org/10.1016/S0378-1119(02)00628-5.
17. Campuzano S., Modolell J. Patterning of the Drosophila nervous system: the achaete-scute gene complex. Trends Genet. 1992;8:202- 206. https://doi.org/10.1016/0168-9525(92)90234-U.
18. Cavodeassi F., Modolell J., Gomez-Skarmeta J.L. The Iroquois family of genes: from body building to neural patterning. Development. 2001;128:2847-2855.
19. Chen L., Segal D., Hukriede N.A., Podtelejnikov A.V., Bayarsaihan D., Kennison J.A., Ogryzko V.V., Dawid I.B., Westphal H. Ssdp proteins interact with the LIM-domain-binding protein Ldb1 to regulate development. Proc. Natl. Acad. Sci. USA. 2002;99(22):14320-14325. https://doi.org/10.1073/pnas.212532399.
20. Costa M., Calleja M., Alonso C.R., Simpson P. The bristle patterning genes hairy and extramacrochaetae regulate the development of structures required for flight in Diptera. Dev. Biol. 2014;388(2):205- 215. https://doi.org/10.1016/j.ydbio.2013.12.032.
21. Cubadda Y., Heitzler P., Ray R.P., Bourouis M., Ramain P., Gelbart W., Simpson P., Haenlin M. u-shaped encodes a zinc fnger protein that regulates the proneural genes achaete and scute during the formation of bristles in Drosophila. Genes Dev. 1997;11:3085-3095. https://doi.org/10.1101/gad.11.22.3083.
22. Culi J., Martin-Blanco E., Modolell J. The EGF receptor and N signalling pathways act antagonistically in Drosophila mesothorax bristle patterning. Development. 2001;128:299-308.
23. Dahmann C., Basler K. Opposing transcriptional outputs of Hedgehog signaling and engrailed control compartmental cell sorting at the Drosophila A/P boundary. Cell. 2000;100(4):411-422.
24. de Celis J.F., Barrio R. Function of the spalt/spalt-related gene complex in positioning the veins in the Drosophila wing. Mech. Dev. 2000; 91:31-41. https://doi.org/10.1016/S0925-4773(99)00261-0.
25. de Celis J.F., Barrio R., Kafatos F.C. Regulation of the spalt/spalt-related gene complex and its function during sensory organ development in the Drosophila thorax. Development. 1999;126:2653-2662.
26. de Navascués J., Modolell J. tailup, a LIM-HD gene, and Iro-C cooperate in Drosophila dorsal mesothorax specifcation. Development. 2007;134:1779-1788. https://doi.org/10.1242/dev.02844.
27. de Navascués J., Modolell J. The pronotum LIM-HD gene tailup is both a positive and a negative regulator of the proneural genes achaete and scute of Drosophila. Mech. Dev. 2010;127:393-406. https://doi.org/10.1016/j.mod.2010.05.001.
28. Delanoue R., Zider A., Cossard R., Dutriaux A., Silber J. Interaction between apterous and early expression of vestigial in formation of the dorso-ventral compartments in the Drosophila wing disc. Genes Cells. 2002;7:1255-1266. https://doi.org/10.1046/j.1365-2443.2002.00600.x.
29. Diez del Corral R., Aroca P., Gomez-Skarmeta J.L., Cavodeassi F., Modolell J. The Iroquois homeodomain proteins are required to specify body wall identity in Drosophila. Genes Dev. 1999;13:1754-1761.
30. Dubinin N.P. Step-allelomorphism and the theory of centres of the gene achaete-scute. J. Genet. 1932;26:37-58.
31. Foronda D., Pérez-Garijo A., Martín F.A. Dpp of posterior origin patterns the proximal region of the wing. Mech. Dev. 2009;126(3-4): 99-106. https://doi.org/10.1016/j.mod.2008.12.002.
32. Fromental-Ramain C., Taquet N., Ramain P. Transcriptional interactions between the pannier isoforms and the cofactor U-shaped during neural development in Drosophila. Mech. Dev. 2010;127:442- 457. https://doi.org/10.1016/j.mod.2010.08.002.
33. Fromental-Ramain C., Vanolst L., Delaporte C., Ramain P. pannier encodes two structurally related isoforms that are differentially expressed during Drosophila development and display distinct functions during thorax patterning. Mech. Dev. 2008;125(1-2):43-57. https://doi.org/10.1016/j.mod.2007.10.008.
34. Furman D.P., Bukharina T.A. How Drosophila melanogaster forms its mechanoreceptors. Curr. Genomics. 2008;9(5):312-323. https://doi.org/10.2174/138920208785133271.
35. Furman D.P., Bukharina T.A. Analysis of the Neurogenesis:Prepattern Gene Network Controlling First Stage of Bristle Pattern Development in Drosophila melanogaster. Russ. J. Genet. Appl. Res. 2017; 7(5):550-557. https://doi.org/10.1134/S2079059717050069.
36. Garcia-Bellido A. The cellular and genetic bases of organ size and shape in Drosophila. Int. J. Dev. Biol. 2009;53:1291-1303. https://doi.org/10.1387/ijdb.072459ag.
37. García-Bellido A., de Celis J.F. The complex tale of the achaete-scute complex: a paradigmatic case in the analysis of gene organization and function during development. Genetics. 2009;182:631-639. https://doi.org/10.1534/genetics.109.104083.
38. Garcia-Garcia M.J., Ramain P., Simpson P., Modolell J. Different contributions of pannier and wingless to the patterning of the dorsal mesothorax of Drosophila. Development. 1999;126:3523-3532.
39. Giagtzoglou N., Alifragis P., Koumbanakis K.A., Delidakis C. Two modes of recruitment of E(spl) repressors onto target genes. Development. 2003;130:259-270. https://doi.org/10.1242/dev.00206.
40. Gómez-Skarmeta J.L., Campuzano S., Modolell J. Half a century of neural prepatterning: the story of a few bristles and many genes. Nat. Rev. Neurosci. 2003;4:587-598. https://doi.org/10.1038/nrn1142.
41. Gómez-Skarmeta J.L., Rodriguez I., Martinez C., Culi J., FerresMarco D., Beamonte D., Modolell J. Cis-regulation of achaete and scute: shared enhancer-like elements drive their coexpression in proneural clusters of the imaginal discs. Genes Dev. 1995;9:2598-2608. https://doi.org/10.1101/gad.9.15.1869.
42. Hainaut M., Sagnier T., Berenger H., Pradel J., Graba Y., Miotto B. The MYST-containing protein Chameau is required for proper sensory organ specifcation during Drosophila thorax morphogenesis. PLoS One. 2012;7:e32882. https://doi.org/10.1371/journal.pone.0032882.
43. Heitzler P., Vanolst L., Biryukova I., Ramain P. Enhancer-promoter communication mediated by Chip during Pannier-driven proneural patterning is regulated by Osa. Genes Dev. 2003;17:591-596. https://doi.org/10.1101/gad.255703.
44. Held L.I., Jr. Imaginal Discs: The Genetic and Cellular Logic of Pattern Formation. Cambridge: Cambridge Univ. Press, 2002.
45. Higashijima S., Kojima T., Michiue T., Ishimaru S., Emori Y., Saigo K. Dual Bar homeo box genes of Drosophila required in two photoreceptor cells, R1 and R6, and primary pigment cells for normal eye development. Genes Dev. 1992;6:50-60.
46. Hooper J.E., Scott M.P. Communicating with Hedgehogs. Nat. Rev. Mol. Cell. Biol. 2005;6(4):306-317. https://doi.org/10.1038/nrm1622.
47. Ikmi A., Netter S., Coen D. Prepatterning the Drosophila notum: the three genes of the iroquois complex play intrinsically distinct roles. Dev. Biol. 2008;317:634-648. https://doi.org/10.1016/j.ydbio.2007.12.034.
48. Ingham P.W., Pinchin S.M., Howard K.R., Ish-Horowicz D. Genetic analysis of the hairy locus in Drosophila melanogaster. Genetics. 1985;111(3):463-486.
49. Jafar-Nejad H., Acar M., Nolo R., Lacin H., Pan H., Parkhurst S.M., Bellen H.J. Senseless acts as a binary switch during sensory organ precursor selection. Genes Dev. 2003;17:2966-2978. https://doi.org/10.1101/gad.1122403.
50. Kehl B.T., Cho K.O., Choi K.W. mirror, a Drosophila homeobox gene in the Iroquois complex, is required for sensory organ and alula formation. Development. 1998;125:1217-1227.
51. Letizia A., Barrio R., Campuzano S. Antagonistic and cooperative actions of the EGFR and Dpp pathways on the iroquois genes regulate Drosophila mesothorax specifcation and patterning. Development. 2007;134:1337-1346. https://doi.org/10.1242/dev.02823.
52. Martín F.A., Pérez-Garijo A., Moreno E., Morata G. The brinker gradient controls wing growth in Drosophila. Development. 2004;131: 4921-4930. https://doi.org/10.1242/dev.01385.
53. Matthews J.M., Visvader J.E. LIM-domain-binding protein 1: a multifunctional cofactor that interacts with diverse proteins. EMBO Rep. 2003;4:1132-1137. https://doi.org/10.1038/sj.embor.7400030.
54. Michel M., Dahmann C. Regulating mechanical tension at compartment boundaries in Drosophila. Fly. 2016;10(4):204-209. https://doi.org/10.1080/19336934.2016.1207028.
55. Modolell J. Patterning of the adult peripheral nervous system of Drosophila. Perspect. Dev. Neurobiol. 1997;4(4):285-296.
56. Modolell J., Campuzano S. The achaete-scute complex as an integrating device. Int. J. Dev. Biol. 1998;42:275-282.
57. Nellen D., Burke R., Struhl G., Basler K. Direct and long-range action of a DPP morphogen gradient. Cell. 1996;85:357-368.
58. Nienhaus U., Aegerter-Wilmsen T., Aegerter C.M. In-vivo imaging of the Drosophila wing imaginal disc over time: novel insights on growth and boundary formation. PLoS One. 2012;7(10):e47594. https://doi.org/10.1371/journal.pone.0047594.
59. Ohsako S., Hyer J.. Panganiban G., Oliver I., Caudy M. hairy function as a DNA-binding helix-loop-helix repressor of Drosophila sensory organ formation. Genes Dev. 1994;8:2743-2755.
60. Potter C.J., Xu T. Mechanisms of size control. Curr. Opin. Genet. Dev. 2001;11(3):279-286.
61. Ramain P., Heitzler P., Haenlin M., Simpson P. pannier, a negative regulator of achaete and scute in Drosophila, encodes a zinc fnger protein with homology to the vertebrate transcription factor GATA-1. Development. 1993;119:1277-1291.
62. Ramain P., Khechumian R., Khechumian K., Arbogast N., Ackermann C., Heitzler P. Interactions between Chip and the achaete/ scute-daughterless heterodimers are required for Pannier-driven proneural patterning. Mol. Cell. 2000;6:781-790. https://doi.org/10.1016/S1097-2765(05)00079-1.
63. Reeves N., Posakony J.W. Genetic programs activated by proneural proteins in the developing Drosophila PNS. Dev. Cell. 2005;8:413- 425. https://doi.org/10.1016/j.devcel.2005.01.020.
64. Restrepo S., Zartman J.J., Konrad B. Coordination of patterning and growth by the morphogen DPP. Curr. Biol. 2014;24(6):R245-R255. https://doi.org/10.1016/j.cub.2014.01.055.
65. Rodríguez I., Hernández R., Modolell J., Ruiz-Gómez M. Competence to develop sensory organs is temporally and spatially regulated in Drosophila epidermal primordial. EMBO J. 1990;9:3583-3592.
66. Rushlow C.A., Hogan A., Pinchin S.M., Howe K.M., Lardelli M., IshHorowicz D. The Drosophila hairy protein acts in both segmentation and bristle patterning and shows homology to N-myc. EMBO J. 1989;8:3095-3103.
67. Sato M., Kojima T., Michiue T., Saigo K. Bar homeobox genes are latitudinal prepattern genes in the developing Drosophila notum whose expression is regulated by the concerted functions of decapentaplegic and wingless. Development. 1999;126:1457-1466.
68. Sato M., Saigo K. Involvement of pannier and u-shaped in regulation of decapentaplegic-dependent wingless expression in developing Drosophila notum. Mech. Dev. 2000;93:127-138. https://doi.org/10.1016/S0925-4773(00)00282-3.
69. Schwank G., Restrepo S., Basler K. Growth regulation by Dpp: an essential role for Brinker and a non-essential role for graded signaling levels. Development. 2008;135:4003-4013. https://doi.org/10.1242/dev.025635.
70. Serebrovsky A.S. Untersuchungen iiber Treppenallelomorphism. IV. Transgenation scute-6 und ein Fall des “Nicht-Allelomorphiss” von Gliedem einer Allelomorphenreihe bei Drosophila melanogaster. Wilhelm Roux’ Arch. 1930;122:88-104.
71. Skeath J.B., Carroll S.B. Regulation of achaete-scute gene expression and sensory organ pattern formation in the Drosophila wing. Genes Dev. 1991;5:984-995.
72. Stern C. Two or three bristles. Am. Sci. 1954;42:213-247.
73. Stern C. Genetic Mosaics and Other Essays. Harvard Univ. Press, Cambridge, Massachusetts. 1968.
74. Stern M.D., Aihara H., Roccaro G.A., Cheung L., Zhang H., Negeri D., Nibu Y. CtBP is required for proper development of peripheral nervous system in Drosophila. Mech. Dev. 2009;126:68-79. https://doi.org/10.1016/j.mod.2008.10.003.
75. Sweetman D., Münsterberg A. The vertebrate spalt genes in development and disease. Dev. Biol. 2006;293:285-293. https://doi.org/10.1016/j.ydbio.2006.02.009.
76. Tomoyasu Y., Nakamura M., Ueno N. Role of Dpp signalling in prepattern formation of the dorsocentral mechanosensory organ in Drosophila melanogaster. Development. 1998;125:4215-4224.
77. Troost T., Schneider M., Klein T. A re-examination of the selection of the sensory organ precursor of the bristle sensilla of Drosophila melanogaster. PLoS Genet. 2015;11(1):e1004911. https://doi.org/10.1371/journal.pgen.1004911.
78. van Meyel D.J., O’Keefe D.D., Jurata L.W., Thor S., Gill G.N., Thomas J.B. Chip and Apterous physically interact to form a functional complex during Drosophila development. Mol. Cell. 1999;4:259- 265. https://doi.org/10.1016/S1097-2765(00)80373-1.
79. Vanolst L., Fromental-Ramain C., Ramain P. Toutatis, a TIP5-related protein, positively regulates Pannier function during Drosophila neural development. Development. 2005;132:4327-4338. https://doi.org/10.1242/dev.02014.
80. Villa¬Cuesta E., González¬Pérez E., Modolell J. Apposition of iroquois expressing and non-expressing cells leads to cell sorting and fold formation in the Drosophila imaginal wing disc. BMC Dev. Biol. 2007;7:106. https://doi.org/10.1186/1471-213X-7-106.
81. Wainwright S.M., Ish-Horowicz D. Point mutations in the Drosophila hairy gene demonstrate in vivo requirements for basic, helix-loophelix, and WRPW domains. Mol. Cell Biol. 1992;12(6):2475- 2483.
82. Wang S.H., Simcox A., Campbell G. Dual role for Drosophila epidermal growth factor receptor signaling in early wing disc development. Genes Dev. 2000;14:2271-2276. https://doi.org/10.1101/gad.827000.
83. Yang M., Hatton-Ellis E., Simpson P. The kinase Sgg modulates temporal development of macrochaetes in Drosophila by phosphorylation of Scute and Pannier. Development. 2012;139:325-334. https://doi.org/10.1242/dev.074260.
84. Zecca M., Basler K., Struhl G. Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development. 1995;121:2265-2278.
85. Zecca M., Struhl G. Subdivision of the Drosophila wing imaginal disc by EGFR-mediated signaling. Development. 2002;129:1357-1368.
86. Zenvirt S., Nevo-Caspi Y., Rencus-Lazar S., Segal D. Drosophila LIM-only is a positive regulator of transcription during thoracic bristle development. Genetics. 2008;179(4):1989-1999. https://doi.org/10.1534/genetics.108.090076.