Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Detection and analysis of dynamic patterns of diurnal expression of mammalian genes

https://doi.org/10.18699/VJ18.450

Abstract

The purpose of the study is to identify and analyze patterns of the diurnal dynamics of the expression of genes that differ in the shape of the curve. It can be expected that the similarity of the patterns of daily expression (shape of the curve) of genes is a reflection of the synchronization of gene expression by common external and internal signals or participation in similar biological processes. Different signals that have daily dynamics (light, activity, nutrition, stress, temperature, etc.) can affect different levels of expression regulation, which can be manifested in various forms of patterns of daily gene expression. In our research, we used experimental data on gene expression at the level of translation (ribosome profling) in the liver and kidney of a mouse (GSE67305 and GSE81283). To identify genes with a daily rhythm of expression, we used a oneway analysis of variance. To identify similar­in­shape curves of the daily dynamics of gene expression, we propose an approach based on cluster analysis. The distance between the genes was calculated by aligning the phases and fnding the maximum cross­correlation between the patterns of the daily expression of these genes by the cyclic shift. This approach allowed us to identify genes that have not only expression patterns with a single maximum (sinusoidal, asymmetrical, shifted to the left or right, pulsed), but also complex composite signals with several extremes. As a result, the groups of genes united by the similarity of the shape of the daily expression curve without regard to their phase characteristics were identifed. GO enrichment analysis of groups of genes with sharply different patterns of daily expression (sinusoidal and pulsed) in the mouse kidneys and liver showed that the group of genes with a sinusoidal pattern was more associated with regulation of circadian rhythm and metabolism. The group of genes with a pulsed pattern is largely associated with the protective functions of the organism, which require the quick response. Thus, our studies have confrmed the effectiveness of the proposed approach to the analysis of the diurnal dynamics of gene expression. The identifed dynamic patterns of diurnal expression are important for the further study of complex circadian regulation, synchronization and interaction of biological processes with diurnal dynamics in mammals.

About the Authors

O. V. Podkolodnaya
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


N. N. Tverdokhleb
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


N. L. Podkolodnyy
Institute of Cytology and Genetics, SB RAS; Institute of Computational Mathematics and Mathematical Geophysics, SB RAS
Russian Federation
Novosibirsk


References

1. Podkolodnyy N.L., Tverdokhleb N.N., Podkolodnaya O.A. Analysis of the circadian rhythm of biological processes in mouse liver and kidney. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(8):903-910. DOI 10.18699/VJ17.311. (in Russian)

2. Adamovich Y., Ladeuix B., Golik M., Koeners M.P., Asher G. Rhythmic oxygen levels reset circadian clocks through HIF1α. Cell Metab. 2017;25(1):93-101. DOI 10.1016/j.cmet.2016.09.014.

3. Atger F., Mauvoisin D., Weger B., Gobet C., Gachon F. Regulation of mammalian physiology by interconnected circadian and feeding rhythms. Front. Endocrinol. (Lausanne). 2017;8:42. DOI 10.3389/fendo.2017.00042.eCollection 2017.

4. Castelo-Szekely V., Arpat A.B., Janich P., Gatfeld D. Translational contributions to tissue specifcity in rhythmic and constitutive gene expression. Genome Biol. 2017;18(1):116.

5. Cermakian N., Westfall S., Kiessling S. Circadian clocks and inflammation: reciprocal regulation and shared mediators. Arch. Immunol. Ther. Exp. (Warsz). 2014;62(4):303-318. DOI 10.1007/s00005-014-0286-x. Epub 2014 Apr 1.

6. de Goede P., Wefers J., Brombacher E.C., Schrauwen P., Kalsbeek A. Circadian rhythms in mitochondrial respiration. J. Mol. Endocrinol. 2018;60(3):R115-R130. DOI 10.1530/JME-17-0196. Epub 2018 Jan 29.

7. Firsov D., Bonny O. Circadian rhythms and the kidney. Nat. Rev. Nephrol. 2018;14(10):626-635. DOI 10.1038/s41581-018-0048-9.

8. Flôres D.E., Bettilyon C.N., Yamazaki S. Period-independent novel circadian oscillators revealed by timed exercise and palatable meals. Sci. Rep. 2016;6:21945. DOI 10.1038/srep21945.

9. Huang D.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44-57.

10. Ingolia N.T. Ribosome profling: new views of translation, from single codons to genome scale. Nat. Rev. Genet. 2014;15(3):205-213. Epub 2014; Jan 28. DOI 10.1038/nrg3645.

11. Janich P., Arpat A.B., Castelo-Szekely V., Lopes M., Gatfeld D. Ribosome profling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames. Genome Res. 2015;25(12):1848-1859.

12. Kornmann B., Schaad O., Bujard H., Takahashi J.S., Schibler U. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 2007;5(2):e34. DOI 10.1371/journal.pbio.0050034.

13. Laing E.E., Johnston J.D., Möller-Levet C.S., Bucca G., Smith C.P., Dijk D.J., Archer S.N. Exploiting human and mouse transcriptomic data: Identifcation of circadian genes and pathways influencing health. Bioessays. 2015;37(5):544-556. DOI 10.1002/bies.201400193.

14. Mendoza-Viveros L., Bouchard¬Cannon P., Hegazi S., Cheng A.H., Pastore S., Cheng H.M. Molecular modulators of the circadian clock: lessons from flies and mice. Cell Mol. Life Sci. 2017;74(6):1035- 1059. DOI 10.1007/s00018-016-2378-8.

15. Reinke H., Saini C., Fleury-Olela F., Dibner C., Benjamin I.J., Schibler U. Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor. Genes Dev. 2008;22(3):331-345. DOI 10.1101/gad.453808.

16. Ribas-Latre A., Eckel-Mahan K. Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health. Mol. Metab. 2016;14;5(3):133-152. DOI 10.1016/j.molmet.2015.12.006.

17. Ripperger J.A., Brown S.A. Transcriptional Regulation of Circadian Clocks. In: Albrecht U. (Ed.) The Circadian Clock. N. Y.: Springer, 2010;37-78.

18. Smircich P., Eastman G., Bispo S., Duhagon M.A., Guerra-Slompo E.P., Garat B., Goldenberg S., Munroe D.J., Dallagiovanna B., Holetz F., Sotelo-Silveira J.R. Ribosome profling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi. BMC Genomics. 2015;16:443. DOI 10.1186/s12864-015-1563-8.

19. Statistics and Machine Learning Toolbox™ User’s Guide. 2018. The Math Works, Inc. https://uk.mathworks.com/help/pdf_doc/stats/stats.pdf

20. Sulli G., Manoogian E.N.C., Taub P.R., Panda S. Training the circadian clock, clocking the drugs, and drugging the clock to prevent, manage, and treat chronic diseases. Trends Pharmacol. Sci. 2018;39(9):812- 827. DOI 10.1016/j.tips.2018.07.003. Epub 2018 Jul 27.

21. Wu Y., Tang D., Liu N., Xiong W., Huang H., Li Y., Ma Z., Zhao H., Chen P., Qi X., Zhang E.E. Reciprocal regulation between the circadian clock and hypoxia signaling at the genome level in mammals. Cell Metab. 2017;25(1):73-85. DOI 10.1016/j.cmet.2016.09.009.

22. Yan Q., Cellular Rhythms and Networks: Implications for Systems Medicine. (Springer Briefs in Cell Biology). Springer, 2015. DOI 10.1007/978-3-319-22819-8.

23. Zhang R., Lahens N.F., Balance H.I., Hughes M.E., Hogenesch J.B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl. Acad. Sci. USA. 2014;111(45): 16219-16224. PMID 25349387. DOI 10.1073/pnas.1408886111.

24. Zhou B., Zhang Y., Zhang F., Xia Y., Liu J., Huang R., Wang Y., Hu Y., Wu J., Dai C., Wang H., Tu Y., Peng X., Wang Y., Zhai Q. CLOCK/ BMAL1 regulates circadian change of mouse hepatic insulin sensitivity by SIRT1. Hepatology. 2014;59(6):2196-206. DOI 10.1002/hep.26992.


Review

Views: 876


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)