Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Prioritization of genes associated with the pathogenesis of leukosis in cattle

https://doi.org/10.18699/VJ18.451

Abstract

Selection by means of genetic markers is a promising approach to the eradication of infectious diseases in farm animals, especially in the absence of effective methods of treatment and prevention. Bovine leukemia virus (BLV) is spread throughout the world and represents one of the biggest problems for the livestock production and food security in Russia. However, recent genome-wide association studies have shown that sensitivity/resistance to BLV is polygenic. The aim of this study was to create a catalog of cattle genes and genes of other mammalian species involved in the pathogenesis of BLV-induced infection and to perform gene prioritization using bioinformatics methods. Based on manually collected information from a range of open sources, a total of 446 genes were included in the catalog of cattle genes and genes of other mammals involved in the pathogenesis of BLV-induced infection. The following criteria were used to prioritize 446 genes from the catalog: (1) the gene is associated with leukemia according to a genome-wide association study; (2) the gene is associated with leukemia according to a case-control study; (3) the role of the gene in leukemia development has been studied using knockout mice; (4) protein-protein interactions exist between the gene-encoded protein and either viral particles or individual viral proteins; (5) the gene is annotated with Gene Ontology terms that are overrepresented for a given list of genes; (6) the gene participates in biological pathways from the KEGG or REACTOME databases, which are over-represented for a given list of genes; (7) the protein encoded by the gene has a high number of protein-protein interactions with proteins encoded by other genes from the catalog. Based on each criterion, a rank was assigned to each gene. Then the ranks were summarized and an overall rank was determined. Prioritization of 446 candidate genes allowed us to identify 5 genes of interest (TNF, LTB, BOLA-DQA1, BOLA-DRB3, ATF2), which can affect the sensitivity/resistance of cattle to leukemia.

About the Authors

N. S. Yudin
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


N. L. Podkolodnyy
Institute of Cytology and Genetics, SB RAS; Institute of Computational Mathematics and Mathematical Geophysics, SB RAS
Russian Federation
Novosibirsk


T. A. Agarkova
Siberian Federal Research Center of Agro-BioTechnologies, RAS
Russian Federation
Krasnoobsk, Novosibirsk region


E. V. Ignatieva
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


References

1. Abdalla E.A., Peñagaricano F., Byrem T.M., Weigel K.A., Rosa G.J. Genome-wide association mapping and pathway analysis of leukosis incidence in a US Holstein cattle population. Anim. Genet. 2016; 47(4):395-407. DOI 10.1111/age.12438.

2. Abdalla E.A., Rosa G.J., Weigel K.A., Byrem T. Genetic analysis of leukosis incidence in United States Holstein and Jersey populations. J. Dairy Sci. 2013;96(9):6022-6029. DOI 10.3168/jds.2013-6732.

3. Barez P.Y., de Brogniez A., Carpentier A., Gazon H., Gillet N., Gutiérrez G., Hamaidia M., Jacques J.R., Perike S., Neelature Sriramareddy S., Renotte N., Staumont B., Reichert M., Trono K., Willems L. Recent Advances in BLV Research. Viruses. 2015;7:6080-6088. DOI 10.3390/v7112929.

4. Bishop S.C. Disease Genetics: Successes, Challenges and Lessons Learnt. Proc. 10th World Congr. Genet. Appl. to Livest. Prod., 2014.

5. Brym P., Bojarojc-Nosowicz B., Olenski K., Hering D.M., Rusc A., Kaczmarczyk E., Kaminski S. Genome-wide association study for host response to bovine leukemia virus in Holstein cows. Vet. Immunol. Immunopathol. 2016;175:24-35. DOI 10.1016/j.vetimm.2016.04.012.

6. Carignano H.A., Roldan D.L., Beribe M.J., Raschia M.A., Amadio A., Nani J.P., Gutierrez G., Alvarez I., Trono K., Poli M.A., Miretti M.M. Genome-wide scan for commons SNPs affecting bovine leukemia virus infection level in dairy cattle. BMC Genomics. 2018;19:142. DOI 10.1186/s12864-018-4523-2.

7. Coffn J.M., Hughes S.H., Varmus H.E. (Eds.). Retroviruses. N. Y.: Cold Spring Harbor Laboratory Press, 2002.

8. Crowe P.D., VanArsdaleT.L., Walter B.N., Ware C.F., Hession C., Ehrenfels B., Browning J.L., Din W.S., Goodwin R.G., Smith C.A. A lymphotoxin-beta-specifc receptor. Science. 1994;264(5159):707-710.

9. FAO. The State of the World’s Animal Genetic Resources for Food and Agriculture. Commission on genetic resources for food and agriculture organization of the United Nations. Rome, 2007. Available at http://www.fao.org/docrep/010/a1250e/a1250e00.htm

10. Gutiérrez G., Lomonaco M., Alvarez I., Fernandez F., Trono K. Characterization of colostrum from dams of BLV endemic dairy herds. Vet. Microbiol. 2015;177:366-369. DOI 10.1016/j.vetmic.2015.03.001.

11. Huang D.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44-57. DOI 10.1038/nprot.2008.211.

12. Ignatieva E.V., Igoshin A.V., Yudin N.S. A database of human genes and a gene network involved in response to tick-borne encephalitis virus infection. BMC Evol. Biol. 2017;17(Suppl.2):259. DOI 10.1186/s12862-017-1107-8.

13. Juliarena M.A., Poli M., Sala L., Ceriani C., Gutierrez S., Dolcini G., Rodríguez E.M., Marino B., Rodríguez-Dubra C., Esteban E.N. Association of BLV infection profles with alleles of the BoLADRB3.2 gene. Anim. Genet. 2008;39:432-438. DOI 10.1111/j.1365-2052.2008.01750.x.

14. Kim J.Y., Moon S.M., Ryu H.J., Kim J.J., Kim H.T., Park C., Kimm K., Oh B., Lee J.K. Identifcation of regulatory polymorphisms in the TNF-TNF receptor superfamily. Immunogenetics. 2005;57(5):297-303.

15. Koeck A., Miglior F., Kelton D.F., Schenkel F.S. Health recording in Canadian Holsteins: data and genetic parameters. J. Dairy Sci. 2012; 95:4099-4108.

16. Konnai S., Usui T., Ikeda M., Kohara J., Hirata T., Okada K., Ohashi K., Onuma M. Tumor necrosis factor-alpha genetic polymorphism may contribute to progression of bovine leukemia virus-infection. Microbes Infect. 2006;8(8):2163-2171.

17. Kotlyar M., Pastrello C., Sheahan N., Jurisica I. Integrated interactions database: tissue-specifc view of the human and model organism interactomes. Nucleic Acids Res. 2016;44(D1):D536-D541. DOI 10.1093/nar/gkv1115.

18. Lendez P.A., Passucci J.A., Poli M.A., Gutierrez S.E., Dolcini G.L., Ceriani M.C. Association of TNF-α gene promoter region polymorphisms in bovine leukemia virus (BLV)-infected cattle with different proviral loads. Arch. Virol. 2015;160(8):2001-2007. DOI 10.1007/s00705-015-2448-5.

19. Lewin H.A. Host genetic mechanism of resistance and susceptibility to a bovine retroviral infection. Anim. Biotechnol. 1994;5:183-191. DOI 10.1080/10495399409525820.

20. Medrano F.J., Leal M., Arienti D., Rey C., Zagliani A., Torres Y., Sanchez-Quijano A., Lissen E., Clerici M. Tumor necrosis factor beta and soluble APO-1/Fas independently predict progression to AIDS in HIV-seropositive patients. AIDS Res. Hum. Retroviruses. 1998;14:835-843.

21. Miyasaka T., Takeshima S.N., Jimba M., Matsumoto Y., Kobayashi N., Matsuhashi T., Sentsui H., Aida Y. Identifcation of bovine leukocyte antigen class II haplotypes associated with variations in bovine leukemia virus proviral load in Japanese Black cattle. Tissue Antigens. 2013;81:72-82. DOI 10.1111/tan.12041.

22. Müller C., Coffey T.J., Koss M., Teifke J.P., Langhans W., Werling D. Lack of TNF alpha supports persistence of a plasmid encoding the bovine leukaemia virus in TNF–/– mice. Vet. Immunol. Immunopathol. 2003;92:15-22.

23. Nakamura T., Tashiro K., Nazarea M., Nakano T., Sasayama S., Honjo T. The murine lymphotoxin-beta receptor cDNA: isolation by the signal sequence trap and chromosomal mapping. Genomics. 1995; 30(2):312-319.

24. Onder L., Danuser R., Scandella E., Firner S., Chai Q., Hehlgans T., Stein J.V., Ludewig B. Endothelial cell-specifc lymphotoxin-β receptor signaling is critical for lymph node and high endothelial venule formation. J. Exp. Med. 2013;210(3):465-473. DOI 10.1084/jem.20121462.

25. Rodríguez S.M., Florins A., Gillet N., de Brogniez A., Sánchez-Alcaraz M.T., Boxus M., Boulanger F., Gutiérrez G., Trono K., Alvarez I., Vagnoni L., Willems L. Preventive and therapeutic strategies for bovine leukemia virus: lessons for HTLV. Viruses. 2011;3:1210- 1248. DOI 10.3390/v3071210.

26. Stepanova T.V. Analysis of the economic damage caused by bovine leukemia from 2010 to 2014 in the Russian Federation. Russ. J. Agric. Socio-Economic Sci. 2016;8(56):49-56. DOI 10.18551/rjoas.2016-08.08.

27. Vsevolozhskaya O.A., Zaykin D.V. Put the odds on your side: a new measure for epidemiological associations. 2018. https://arxiv.org/pdf/1806.04251.pdf

28. Willems L., Kettmann R., Chen G., Portetelle D., Burny A., Derse D. A cyclic AMP-responsive DNA-binding protein (CREB2) is a cellular transactivator of the bovine leukemia virus long terminal repeat. J. Virol. 1992;66:766-772.

29. Xu A., van Eijk M.J., Park C., Lewin H.A. Polymorphism in BoLADRB3 exon 2 correlates with resistance to persistent lymphocytosis caused by bovine leukemia virus. J. Immunol. 1993;151:6977-6985.


Review

Views: 815


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)