Effect of physical activity on structural asymmetry of mouse hippocampus
https://doi.org/10.18699/VJ18.454
Abstract
The relevance of studies of adult neurogenesis is evident in connection with the potential use of these new neurons to replace neurons lost in the process of life. Despite considerable efforts, little is known about the fnal fate of these cells, the functional signifcance of their connections and the regulation of their development. It is known that physical activity signifcantly increases the number of fssile progenitors, the precursors of new neurons in the dentate gyrus of the hippocampus. The existing immunohistochemical methods for labeling new neurons do not allow tracing the temporal dynamics of changes in the volume of brain structures in the same animal, induced by external impacts, such as voluntary exercise. This makes it an urgent task to develop and improve methods for longterm control of changes that occur in the adult hippocampus due to the induction of neurogenesis. The main purpose of this work was to noninvasively track, by using magnetic resonance imaging (MRI), the temporal dynamics of changes in the volume of the hippocampus in the same animals that had voluntary physical activity. It was found that voluntary exercise did not change the total volume of the mouse hippocampus. However, the difference in the volume ratio between the right and left parts of the hippocampus was signifcantly lower compared with the control group. The reconstruction and analysis of proteinprotein interactions that ensure the survival of a large number of new neurons and their integration into existing neural networks in the hippocampus have been carried out. The proposed approach allows the noninvasive registration of changes in the ratio of the volumes of these paired brain structures.
About the Authors
T. A. ZaparaRussian Federation
Novosibirsk
A. V. Romashchenko
Russian Federation
Novosibirsk
A. L. Proskura
Russian Federation
Novosibirsk
A. S. Ratushnyak
Russian Federation
Novosibirsk
References
1. Akers K.G., Martinez-Canabal A., Restivo L., Yiu A.P., De Cristofaro A., Hsiang H.L., Wheeler A.L., Guskjolen A., Niibori Y., Shoji H., Ohira K., Richards B.A., Miyakawa T., Josselyn S.A., Frankland P.W. Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science. 2014;344(6184):598-602. DOI 10.1126/science.1248903.
2. Anai M., Shojima N., Katagiri H., Ogihara T., Sakoda H., Onishi Y., Ono H., Fujishiro M., Fukushima Y., Horike N., Viana A., Kikuchi M., Noguchi N., Takahashi S., Takata K., Oka Y., Uchijima Y., Kurihara H., Asano T. A novel protein kinase B (PKB)/AKT-binding protein enhances PKB kinase activity and regulates DNA synthesis. J. Biol. Chem. 2005;280(18):18525-18535. DOI 10.1074/jbc.M500586200.
3. Bhatt D.H., Zhang S., Gan W.B. Dendritic spine dynamics. Annu. Rev. Physiol. 2009;71:261-282. DOI 10.1146/annurev.physiol.010908.163140.
4. Brown J., Cooper-Kuhn C.M., Kempermann G., Van Praag H., Winkler J., Gage F.H., Kuhn H.G. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur. J. Neurosci. 2003;17(10):2042-2046.
5. Christie B.R., Cameron H.A. Neurogenesis in the adult hippocampus. Hippocampus. 2006;16(3):199-207. DOI 10.1002/hipo.20151.
6. Dayer A.G., Ford A.A., Cleaver K.M., Yassaee M., Cameron H.A. Short-term and long-term survival of new neurons in the rat dentate gyrus. J. Comp. Neurol. 2003;460(4):563-572. DOI 10.1002/cne.10675.
7. Deng W., Saxe M.D., Gallina I.S., Gage F.H. Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J. Neurosci. 2009;29(43):13532-13542. DOI 10.1523/JNEUROSCI.3362-09.2009.
8. Deshpande A., Bergami M., Ghanem A., Conzelmann K.K., Lepier A., Götz M., Beninger B. Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb. Proc. Natl. Acad. Sci. USA. 2013;110(12): E1152-E1161. DOI 10.1073/pnas.1218991110.
9. Drew L.J., Fusi S., Hen R. Adult neurogenesis in the mammalian hippocampus: why the dentate gyrus? Learn. Mem. 2013;20(12):710-729. DOI 10.1101/lm.026542.112.
10. Duan X., Chang J.H., Ge S., Faulkner R.L., Kim J.Y., Kitabatake Y., Liu X.B., Yang C.H., Jordan J.D., Ma D.K., Liu C.Y., Ganesan S., Cheng H.J., Ming G.L., Lu B., Song H. Disrupted-in-schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell. 2007;130(6):1146-1158. DOI 10.1016/j.cell.2007.07.010.
11. El-Gaby M., Shipton O.A., Paulsen O. Synaptic plasticity and memory: new insights from hippocampal left-right asymmetries. Neuroscientist. 2015;21(5):490-502. DOI 10.1177/1073858414550658.
12. Enomoto A., Murakami H., Asai N., Morone N., Watanabe T., Kawai K., Murakumo Y., Usukura J., Kaibuchi K., Takahashi M. Akt/PKB regulates actin organization and cell motility via Girdin/APE. Dev. Cell. 2005;9(3):389-402. DOI 10.1016/j.devcel.2005.08.001.
13. Faulkner R.L., Jang M.H., Liu X.B., Duan X., Sailor K.A., Kim J.Y., Ge S., Jones E.G., Ming G.L., Song H., Cheng H.J. Development of hippocampal mossy fber synaptic outputs by new neurons in the adult brain. Proc. Natl. Acad. Sci. USA. 2008;105(37):14157-14162. DOI 10.1073/pnas.0806658105.
14. Fournier N.M., Duman R.S. Role of vascular endothelial growth factor in adult hippocampal neurogenesis: implications for the pathophysiology and treatment of depression. Behav. Brain Res. 2012;227(2): 440-449. DOI 10.1016/J.BBR.2011.04.022.
15. Fukuda S., Kato F., Tozuka Y., Yamaguchi M., Miyamoto Y., Hisatsune T. Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J. Neurosci. 2003;23(28):9357-9366.
16. Haber M., Zhou L., Murai K.K. Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J. Neurosci. 2006;26(35):8881-8891. DOI 10.1523/JNEUROSCI.1302-06.2006.
17. Huang J., Manning B.D. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem. Soc. Trans. 2009;37(Pt. 1): 217-222. DOI 10.1042/BST0370217.
18. Kim J.Y., Duan X., Liu C.Y., Jang M.H., Guo J.U., Pow-anpongkul N., Kang E., Song H., Ming G.L. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron. 2009;63(6):761-773. DOI 10.1016/j.neuron.2009.08.008.
19. Kitamura T., Asai N., Enomoto A., Maeda K., Kato T., Ishida M., Jiang P., Watanabe T., Usukura J., Kondo T., Costantini F., Murohara T., Takahashi M. Regulation of VEGF-mediated angiogenesis by the Akt/PKB substrate Girdin. Nat. Cell. Biol. 2008;10(3):329- 337. DOI 10.1038/ncb1695.
20. Knott G.W., Holtmaat A., Wilbrecht L., Welker E., Svoboda K. Spine growth precedes synapse formation in the adult neocortex in vivo. Nat. Neurosci. 2006;9(9):1117-1124. DOI 10.1038/nn1747.
21. Kronenberg G., Reuter K., Steiner B., Brandt M.D., Jessberger S., Yamaguchi M., Kempermann G. Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J. Comp. Neurol. 2003;467(4):455-463. DOI 10.1002/cne.10945.
22. Lerch J.P., Yiu A.P., Martinez-Canabal A., Pekar T., Bohbot V.D., Frankland P.W., Henkelman R.M., Josselyn S.A., Sled J.G. Maze training in mice induces MRI-detectable brain shape changes specifc to the type of learning. Neuroimage. 2011;54(3):2086-2095. DOI 10.1016/j.neuroimage.2010.09.086.
23. Muramatsu R., Ikegaya Y., Matsuki N., Koyama R. Neonatally born granule cells numerically dominate adult mice dentate gyrus. Neuroscience. 2007;148(3):593-598. DOI 10.1016/j.neuroscience.2007.06.040.
24. Nakai T., Nagai T., Tanaka M., Itoh N., Asai N., Enomoto A., Asai M., Yamada S., Saifullah A.B., Sokabe M., Takahashi M., Yamada K. Girdin phosphorylation is crucial for synaptic plasticity and memory: a potential role in the interaction of BDNF/TrkB/Akt signaling with NMDA receptor. J. Neurosci. 2014;34(45):14995-5008. DOI 10.1523/JNEUROSCI.2228-14.2014.
25. Ortiz-López L., Vega-Rivera N.M., Babu H., Ramírez-Rodríguez G.B. Brain-derived neurotrophic factor induces cell survival and the migration of murine adult hippocampal precursor cells during differentiation in vitro. Neurotox. Res. 2017;31(1):122-135. DOI 10.1007/S12640-016-9673-X.
26. Palmer T.D., Willhoite A.R., Gage F.H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 2000;425(4):479-494.
27. Patten A.R., Sickmann H., Hryciw B.N., Kucharsky T., Parton R., Kernick A., Christie B.R. Long-term exercise is needed to enhance synaptic plasticity in the hippocampus. Learn. Mem. 2013;20(11): 642-647. DOI 10.1101/Lm.030635.113.
28. Sarbassov D.D., Guertin D.A., Ali S.M., Sabatini D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098-1101. DOI 10.1126/science.1106148.
29. Schnyder S., Handschin C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone. 2015;80:115-125. DOI 10.1016/j.bone.2015.02.008.
30. Seri B., García-Verdugo J.M., Collado-Morente L., McEwen B.S., Alvarez-Buylla A. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J. Comp. Neurol. 2004;478(4):359- 378. DOI 10.1002/cne.20288.
31. Vanhaesebroeck B., Alessi D.R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 2000;346(Pt. 3):561-576.
32. Volinia S., Dhand R., Vanhaesebroeck B., MacDougall L.K., Stein R., Zvelebil M.J., Domin J., Panaretou C., Waterfeld M.D. A human phosphatidylinositol 3-kinase complex related to the yeast Vps34pVps15p protein sorting system. EMBO J. 1995;14(14):3339-3348.
33. Yang G., Pan F., Gan W.B. Stably maintained dendritic spines are associated with lifelong memories. Nature. 2009;462(7275):920-924. DOI 10.1038/nature08577.