ОЦЕНКА ПО ТЕХНОЛОГИИ rSNP_Guide SNPs ПРОМОТОРОВ ГЕНОВ АРС И МLH1 ЧЕЛОВЕКА, СВЯЗАННЫХ С РАКОМ ТОЛСТОГО КИШЕЧНИКА

Полный текст:


Аннотация

Каждый из 6 регуляторных SNPs (Single nucleotide polymorphisms) генов APC и MLH1 человека (rs75996864, rs76241113, rs78037487, rs80112297, rs80313086 и rs1800734) был оценен по созданной ранее технологии rSNP_Guide на значимость изменения связывания каждого из 40 факторов транскрипции с соответствующими районами ДНК. В результате для каждого SNP все анализируемые белки были ранжированы по убыванию уровня статистической значимости α (t-тест Стьюдента) изменения их сродства к аллельным вариантам указанной ДНК. Установлено, что самыми вероятными проявлениями SNPs rs75996864, rs76241113, rs78037487, rs80112297 и rs80313086 гена APC, а также SNP rs1800734 гена MLH1 человека являются изменения в связывании именно тех транскрипционных факторов (NF-Y, NFkB, c-Myb, RAR, YY-1, Sp-1), для которых ранее было показано участие в развитии рака толстого кишечника. Полученные результаты служат новым основанием для исследований ассоциации SNPs rs75996864, rs76241113, rs78037487, rs80112297, rs80313086 гена APC с раком толстого кишечника общепринятыми медико-генетическими методами.


Об авторах

Д. А. Рассказов
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Е. В. Антонцева
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Л. О. Брызгалов
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


М. Ю. Матвеева
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Е. В. Кашина
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


П. М. Пономаренко
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Г. В. Орлова
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


М. П. Пономаренко
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Д. А. Афонников
Федеральное государственное бюджетное учреждение науки Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия
Россия


Т. И. Меркулова
Федеральное государственное бюджетное учреждение науки Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия
Россия


Список литературы

1. Антонцева Е.В., Брызгалов Л.О., Матвеева М.Ю. и др. Поиск регуляторных SNPs, связанных с развитием рака толстой кишки, в генах АРС и МLH1 // Вавилов. журн. генет. и селекции. 2011. Т. 15. Вып. 4. C. 644–652.

2. Allgayer H. Pdcd4, a colon cancer prognostic that is regulated by a microRNA // Crit. Rev. Oncol. Hematol. 2010. V. 73. Nо. 3. P. 185–191.

3. Alvarado-Pisani A.R., Chacon R.S., Betancourt L.J., Lopez-Herrera L. Thyroid hormone receptors in human breast cancer: effect of thyroxine administration // Anticancer Res. 1986. V. 6. Nо. 6. P. 1347–1351.

4. Andersen V., Christensen J., Overvad K. et al. Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a prospective study of Danes // BMC Cancer. 2010. V. 10. P. 484.

5. Ansorge N., Juttner S., Cramer T. et al. An upstream CRE-Ebox element is essential for gastrin-dependent activation of the cyclooxygenase-2 gene in human colon cancer cells // Regul. Pep. 2007. V. 144. Nо. 1/3. P. 25–33.

6. Antontseva E.V., Bryzgalov L.O., Matveeva M.Yu. et al. Search for regulatory SNPs associated with colon cancer in the APC and MLH1 genes // Russ. J. Genet: Appl. Res. 2012. V. 2. No. 3. P. 222–228.

7. Arasaradnam R.P., Quraishi M.N., Commane D. et al. MYOD-1 in normal colonic mucosa–role as a putative biomarker? // BMC Res. Notes. 2012. V. 5. P. 240.

8. Auerbach R.K., Chen B., Butte A.J. Relating genes to function: identifying enriched transcription factors using the ENCODE ChIP-Seq significance tool // Bioinformatics. 2013. V. 29. Nо. 15. P. 1922–1924.

9. Belanger A.S., Tojcic J., Harvey M., Guillemette C. Regulation of UGT1A1 and HNF1 transcription factor gene expression by DNA methylation in colon cancer cells // BMC Mol. Biol. 2010. V. 11. P. 9.

10. Berg O.G., von Hippel P.H. Selection of DNA binding sites by regulatory proteins, Statistical-mechanical theory and application to operators and promoters // J. Mol. Biol. 1987. V. 193. Nо. 4. P. 723–750.

11. Bruno M.E., West R.B., Schneeman T.A. et al. Upstream stimulatory factor but not c-Myc enhances transcription of the human polymeric immunoglobulin receptor gene // Mol. Immunol. 2004. V. 40. Nо. 10. P. 695–708.

12. Byrne A.M., Foran E., Sharma R. et al. Bile acids modulate the Golgi membrane fission process via a protein kinase Ceta and protein kinase D-dependent pathway in colonic epithelial cells // Carcinogenesis. 2010. V. 31. Nо. 4. P. 737–744.

13. Chinnappan D., Xiao D., Ratnasari A. et al. Transcription factor YY1 expression in human gastrointestinal cancer cells // Int. J. Oncol. 2009. V. 34. Nо. 5. P. 1417–1423.

14. Christensen L.L., Tobiasen H., Holm A. et al. MiRNA-362-3p induces cell cycle arrest through targeting of E2F1, USF2 and PTPN1 and is associated with recurrence of colorectal cancer // Int. J. Cancer. 2013. V. 133. Nо. 1. P. 67–78.

15. Gerstenblith M.R., Shi J., Landi M.T. Genome-wide association studies of pigmentation and skin cancer: a review and meta-analysis // Pigment Cell Melanoma Res. 2010. V. 23. Nо. 5. P. 587–606.

16. Groubet R., Pallet V., Delage B. et al. Hyperlipidic diets induce early alterations of the vitamin A signalling pathway in rat colonic mucosa // Endocr. Regul. 2003. V. 37. Nо. 3. P. 137–144.

17. Hamosh A., Scott A.F., Amberger J.S. et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders // Nucl. Acids Res. 2005. V. 33. P. D514–D517.

18. Hindorff L.A., Sethupathy P., Junkins H.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits // Proc. Natl Acad. Sci. USA. 2009. V. 106. Nо. 23. P. 9362–9367.

19. Hitchins M.P., Wong J.J.L., Suthers G. et al. Inheritance of a cancer-associated MLH1 germ-line epimutation // New Eng. J. Med. 2007. V. 356. Nо. 7. P. 697–705.

20. Kameue C., Tsukahara T., Ushida K. Alteration of gene expression in the colon of colorectal cancer model rat by dietary sodium gluconate // Biosci. Biotechnol. Biochem. 2006. V. 70. Nо. 3. P. 606–614.

21. Kolchanov N.A., Merkulova T.I., Ignatieva E.V. et al. Combined experimental and computational approaches to study the regulatory elements in eukaryotic genes // Brief Bioinform. 2007. V. 8. Nо. 4. P. 266–274.

22. Mulholland D.J., Dedhar S., Coetzee G.A., Nelson C.C. Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Want you like to know? // Endocrinol. Rev. 2005. V. 26. Nо. 7. P. 898–915.

23. NCBI Resource Coordinators, Database resources of the National Center for Biotechnology Information // Nucl. Acids Res. 2013. V. 41. P. D8–D20.

24. Oshchepkov D.Y., Vityaev E.E., Grigorovich D.A. et al. SITECON: a tool for detecting conservative conformational and physicochemical properties in transcription factor binding site alignments and for site recognition // Nucl. Acids Res. 2004. V. 32. Web Server issue. P. W208–W212.

25. Pare L., Marcuello E., Altes A. et al. Transcription factorbinding sites in the thymidylate synthase gene: predictors of outcome in patients with metastatic colorectal cancer treated with 5-fluorouracil and oxaliplatin? // Pharmacogenomics J. 2008. V. 8. Nо. 5. P. 315–320.

26. Park S.H., Yu G.R., Kim W.H. et al. NF-Y-dependent cyclin B2 expression in colorectal adenocarcinoma // Clin. Cancer Res. 2007. V. 13. Nо. 3. P. 858–867.

27. Polakis P. An Introduction to Wnt Signaling // Targeting the Wnt Pathway in Cancer. N.Y.: Springer, 2011. Р. 1–18.

28. Ponomarenko J.V., Merkulova T.I., Vasiliev G.V. et al. rSNP_Guide, a database system for analysis of transcription factor binding to target sequences: application to SNPs and site-directed mutations // Nucl. Acids Res. 2001. V. 29. Nо. 1. P. 312–316.

29. Ponomarenko J.V., Orlova G.V., Merkulova T.I. et al. rSNP_ Guide: an integrated database-tools system for studying SNPs and site-directed mutations in transcription factor binding sites // Hum. Mutat. 2002. V. 20. Nо. 4. P. 239–248.

30. Ponomarenko M.P., Ponomarenko J.V., Frolov A.S. et al. Oligonucleotide frequency matrices addressed to recognizing functional DNA sites // Bioinformatics. 1999. V. 15. P. 631–643.

31. Ramsay R.G., Ciznadija D., Vanevski M., Mantamadiotis T. Transcriptional regulation of cyclo-oxygenase expression: three pillars of control // Int. J. Immunopathol. Pharmacol. 2003. V. 16. Nо. 2 (Suppl). P. 59–67.

32. Sanchez-Ruiz J.M. Protein kinetic stability // Biophys. Chem. 2010. V. 148. P. 1–15.

33. The International Human Genome Sequencing Consortium, Finishing the euchromatic sequence of the human genome // Nature. 2004. V. 431. Nо. 7011. P. 931–945.

34. Wai P.Y., Mi Z., Gao C. et al. Ets-1 and runx2 regulate transcription of a metastatic gene, osteopontin, in murine colorectal cancer cells // J. Biol. Chem. 2006. V. 281. Nо. 28. P. 18973–18982.

35. Wei H.B., Han X.Y., Fan W. et al. Effect of retinoic acid on cell proliferation kinetics and retinoic acid receptor expression of colorectal mucosa // World J. Gastroenterol. 2003. V. 9. Nо. 8. P. 1725–1728.

36. Win A.K., Hopper J.L., Buchanan D.D. et al. Are the common genetic variants associated with colorectal cancer risk for DNA mismatch repair gene mutation carriers? // Eur. J. Cancer. 2013. V. 49. Nо. 7. P. 1578–1587.

37. Xu X.L., Yu J., Zhang H.Y. et al. Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis // World J. Gastroenterol. 2004. V. 10. Nо. 23. P. 3441–3454.


Дополнительные файлы

Просмотров: 92

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)