NETINFERENCE: COMPUTER PROGRAMS FOR REVEALING NETWORK STRUCTURE AND DYNAMICS
Abstract
We present a computer package for analyzing the structure-functional organization and evolution of biological, social and other networks. The programs allows investigation of not only the global network architecture, but also its local properties, revealing key regulators and structure-functional modules. Also, the network evolution can be traced. The package has been tested with two gene networks: the co-authorship network of biomedical papers and the biomedical term network.
About the Authors
I. I. TitovRussian Federation
A. A. Blinov
Russian Federation
K. A. Rudnichenko
Russian Federation
P. V. Krutov
Russian Federation
A. L. Kazantsev
Russian Federation
A. I. Kulikov
Russian Federation
References
1. Alvarez-Buylla E.R., Chaos A., Aldana M. et al. Padillalongoria floral morphogenesis: stochastic explorations of a gene network epigenetic landscape // PLoS ONE. 2008. V. 3. Nо. 11.
2. Kauffman S.A. Metabolic stability and epigenesis in randomly constructed genetic nets // J. Theor. Biol. 1969. V. 22. P. 437–467.
3. McKay B.D., Piperno A. Practical graph isomorphism. II. 2013. 22 p. http://arxiv.org/abs/1301.1493.
4. Newman M.E.J. The structure and functions of complex networks // SIAM Rev. 2003. V. 45. Nо. 2. Р. 167–256.
5. Stepanenko I.L., Titov I.I. Computer analysis of stress response network E. ��с��oli // Proc. 7th Int. Conf. on Bioinformatics of Genome Regulation and StructureSystems Biology BGRSSB.10. Novosibirsk, Russia, June 20–27 2010. Novosibirsk. Р. 278.
6. Wernicke S., Rasche F. FANMOD: a tool for fast network motif detection // Bioinformatics. 2006. V. 22. Nо. 9. P. 1152–1153.
7. Xu X., Yuruk N., Feng Zh., Schweiger T.A.J. SCAN: a structural clustering algorithm for networks // Proc. KDD ‘07 Proc. of the 13th ACM SIGKDD Intern. Conf. on Knowledge discovery and data mining. N.Y., 2007. P. 824–833.