A simple and efficient method to extract polar metabolites from guar leaves (Cyamopsis tetragonoloba (L.) Taub.) for GC-MS metabolome analysis
https://doi.org/10.18699/VJ19.460
Abstract
About the Authors
S. B. TeplyakovaRussian Federation
St. Petersburg
A. L. Shavarda
Russian Federation
St. Petersburg
T. V. Shelenga
Russian Federation
St. Petersburg
E. A. Dzyubenko
Russian Federation
St. Petersburg
E. K. Potokina
Russian Federation
St. Petersburg
References
1. Loskutov I.G., Shelenga T.V., Konarev A.V., Shavarda A.L., Blinova E.V., Dzubenko N.I. The metabolomic approach to the comparative analysis of wild and cultivated species of oats (Avena L.). Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(5):636-642. DOI 10.18699/VJ16.185. (in Russian)
2. Smolikova G.N., Shavarda A.L., Alekseichuk I.V., Chantseva V.V., Medvedev S.S. The metabolomic approach to the assessment of cultivar specificity of Brassica napus L. seeds. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2015; 19(1):121-127. DOI 10.18699/VJ15.015. (in Russian)
3. Alonso A., Marsal S., Julià A. Analytical methods in untargeted metabolomics: state of the art in 2015. Front. Bioeng. Biotechnol. 2015; 3(23):1-20. DOI 10.3389/fbioe.2015.00023.
4. Bundy J.G., Spurgeon D.J., Svendsen C., Hankard P.K., Osborn D., Lindon J.C., Nicholson J.K. Earthworm species of the genus Eisenia can be phenotypically differentiated by metabolic profiling. FEBS Letters. 2002;521(1-3):115-120. DOI 10.1016/s0014-5793(02) 02854-5.
5. Catchpole G., Beckmann M., Enot D., Mondhe M., Zywicki B., Taylor J., Fiehn O. Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc. Natl. Acad. Sci. 2005;102(40):1445814462. DOI 10.1073/pnas.0503955102.
6. Chong J., Soufan O., Li C., Caraus I., Li S., Bourque G., Wishart D., Xia J. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucl. Acids Res. 2018;46(1):486-494. DOI 10.1093/nar/gky310.
7. Farag M.A., Gad H.A., Heiss A.G., Wessjohann L.A. Metabolomics driven analysis of six Nigella species seeds via UPLC-qTOF-MS and GC–MS coupled to chemometrics. Food Chem. 2014;151:333342. DOI 10.1016/j.foodchem.2013.11.032.
8. Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp. Funct. Genomics. 2001;2(3):155-168. DOI 10.1002/cfg.82.
9. Fiehn O. Metabolomics – the link between genotypes and phenotypes. Plant Mol. Biol. 2002;48:155-171. DOI 10.1007/978-94-010-04480_11.
10. Fiehn O., Kopka J., Dörmann P., Altmann T., Trethewey R., Willmitzer L. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 2000;18(11):1157-1161. DOI 10.1038/81137.
11. Hall R., Beale M., Fiehn O., Hardy N., Sumner L., Bino R. Plant metabolomics: the missing link in functional genomics strategies. Plant Cell. 2002;14(7):1437-1440. DOI 10.1105/tpc.140720.
12. Kanani H., Chrysanthopoulos P.K., Klapa M.I. Standardizing GC–MS metabolomics. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2008;871(2):191-201. DOI 10.1016/j.jchromb.2008.04.049.
13. Kanani H.H., Klapa M.I. Data correction strategy for metabolomics analysis using gas chromatography-mass spectrometry. Metab. Eng. 2007;9(1):39-51. DOI 10.1016/j.ymben.2006.08.001.
14. Lisec J., Schauer N., Kopka J., Willmitzer L., Fernie A.R. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 2006;1(1):387-396. DOI 10.1038/nprot.2006.59.
15. Maharjan R.P., Ferenci T. Global metabolite analysis: the influence of extraction methodology on metabolome profiles of escherichia coli. Anal. Biochem. 2003;313(1):145-154. DOI 10.1016/S0003-2697(02) 00536-5.
16. Martineau E., Tea I., Loaëc G., Giraudeau P., Akoka S. Strategy for choosing extraction procedures for NMR-based metabolomic analysis of mammalian cells. Anal. Bioanal. Chem. 2011;401(7):21332142. DOI 10.1007/s00216-011-5310-y.
17. Puzanskiy R.K., Yemelyanov V.V., Kliukova M.S., Shavarda A.L., Shtark O.Y., Yurkov A.P., Shishova M.F. Optimization of metabolite profiling for Black Medick (Medicago lupulina) and Peas (Pisum sativum). Applied Biochem. Microbiol. 2018;54(4):442-448. DOI 10.1134/S0003683818040129.
18. Roessner U., Luedemann A., Brust D., Fiehn O., Linke T., Willmitzer L., Fernie A.R. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. The Plant Cell. 2001;13(1):11-29. DOI 10.1105/tpc.13.1.11.
19. Röhlig R.M., Eder J., Engel K.H. Metabolite profiling of maize grain: differentiation due to genetics and environment. Metabolomics. 2009;5(4):459-477. DOI 10.1007/s11306-009-0171-5.
20. Shinbo Y., Nakamura Y., Altaf-Ul-Amin M., Asahi H., Kurokawa K., Arita M., Kanaya S. KNApSAcK: a comprehensive species-metabolite relationship database. Plant Metabolomics. 2006;57:165-181. DOI 10.1007/3-540-29782-0_13.
21. Wishart D.S. Advances in metabolite identification. Bioanalysis. 2011; 3(15):1769-1782. DOI 10.4155/bio.11.155