КОМПЬЮТЕРНЫЙ АНАЛИЗ ДАННЫХ ЭКСПРЕССИИ ГЕНОВ В КЛЕТКАХ МОЗГА, ПОЛУЧЕННЫХ С ПОМОЩЬЮ МИКРОЧИПОВ И ВЫСОКОПРОИЗВОДИТЕЛЬНОГО СЕКВЕНИРОВАНИЯ

Полный текст:


Аннотация

В последние годы происходит стремительное расширение фронта нейробиологических исследований, сопровождающееся бурным ростом объема экспериментальных данных по структуре, функции и эволюции нервной системы на различных уровнях ее иерархической организации. Использование технологий высокопроизводительного секвенирования и микрочипов позволяет проводить сравнительный статистический анализ экспрессии тысяч генов одновременно, учитывая при этом пространственное расположение клеток в структурах мозга. Дан краткий обзор основных подходов анализа экспрессии генов в клетках мозга. Проанализированы особенности структуры генов, имеющих дифференциальную экспрессию в клетках мозга. Оценивалось число экзонов, альтернативных транскриптов и его соотношение с уровнем экспрессии. Показано статистическое различие числа альтернативных транскриптов для генов, активных в структурах головного мозга и других органов. Найдены гены, экспрессия которых повышена в структурах мозга и связана с нейродегенеративными заболеваниями.


Об авторах

И. В. Медведева
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


О. В. Вишневский
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Н. С. Сафронова
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


О. С. Кожевникова
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


М. А. Генаев
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Д. А. Афонников
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


А. В. Кочетов
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Ю. Л. Орлов
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Список литературы

1. Витяев Е.Е., Орлов Ю.Л., Вишневский О.В. и др. Компьютерная система «GENE DISCOVERY» для поиска закономерностей организации регуляторных последовательностей эукариот // Молекуляр. биология. 2001. Т. 35. № 6. С. 952–960.

2. Кожевникова О.С., Мартыщенко М.К., Генаев М.К. и др. RatDNA: база данных микрочиповых исследований на крысах для генов, ассоциированных с заболеваниями старения // Вавилов. журн. генет. и селекции. 2012. Т. 16. № 4/1. P. 756–765.

3. Орлов Ю.Л., Брагин А.О., Медведева И.В. и др. ICGenomics: программный комплекс анализа символьных последовательностей геномики // Вавилов. журн. генет. и селекции. 2012. Т. 16. № 4/1. P. 732–741.

4. Орлов Ю.Л., Вишневский О.В., Витяев Е.Е. и др. Биоинформационный анализ экспрессии генов в клетках мозга // Тр. XV Всерос. науч.-техн. конф. «Нейроинформатика-2013». 21–25 января 2013 г. М.: Национальный исследовательский ядерный ун-т «МИФИ», 2013. С. 74–85.

5. Ananko E.A., Podkolodny N.L., Stepanenko I.L. et al. GeneNet in 2005 // Nucl. Acids Res. 2005. 33(Database issue). D425–427.

6. Cheng L., Quek C., Sun X. et al. Deep-sequencing of microRNA associated with Alzheimer’s disease in biological fluids: From biomarker discovery to diagnostic practice // Frontiers in Genetics. 2013. V. 4. 00150.

7. Darnell J.C. Defects in translational regulation contributing to human cognitive and behavioral disease // Curr. Opin. Genet. Dev. 2011. V. 21. No. 4. P. 465–473.

8. Demenkov P.S., Ivanisenko T.V., Kolchanov N.A., Ivanisenko V.A. ANDVisio: A new tool for graphic visualization and analysis of literature mined associative gene networks in the ANDSystem // In Silico Biol. 2011. V. 11. No. 3. P. 149–161.

9. Gerashchenko M.V., Lobanov A.V., Gladyshev V.N. Genomewide ribosome profiling reveals complex translational regulation in response to oxidative stress // Proc. Natl Acad. Sci. USA. 2012. V. 109. No. 43. P. 17394–17399.

10. Grinchuk O.V., Jenjaroenpun P., Orlov Y.L. et al. Integrative analysis of the human cis-antisense gene pairs, miRNAs and their transcription regulation patterns // Nucl. Acids Res. 2010. V. 38. No. 2. P. 534–547.

11. Hawrylycz M.J., Lein E.S., Guillozet-Bongaarts A.L. et al. An anatomically comprehensive atlas of the adult human brain transcriptome // Nature. 2012. V. 489. No. 7416. P. 391–399.

12. Hung T., Chang H.Y. Long noncoding RNA in genome regulation: prospects and mechanisms // RNA Biol. 2010. V. 7. No. 5. P. 582–585.

13. Jung H., O’Hare C.M., Holt C.E. Translational regulation in growth cones // Curr. Opin. Genet. Dev. 2011. V. 21. No. 4. P. 458–464.

14. Kolosova N.G., Trofimova N.A., Fursova A. Opposite effects of antioxidants on anxiety in Wistar and OXYS rats // Bull. Exp. Biol. Med. 2006. V. 141. P. 734–737.

15. Kozhevnikova O.S., Korbolina E.E., Stefanova N.A. et al. Association of AMD-like retinopathy development with an Alzheimer’s disease metabolic pathway in OXYS rats // Biogerontology. 2013. DOI 10.1007/s10522-013-9439-2 [Epub ahead of print].

16. Kundel M., Jones K.J., Shin C.Y., Wells D.G. Cytoplasmic polyadenylation element-binding protein regulates neurotrophin-3-dependent beta-catenin mRNA translation in developing hippocampal neurons // J. Neurosci. 2009. V. 29. No. 43. P. 13630–13639.

17. Lai M.C., Yang Z., Zhou L. et al. Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation // Med. Oncol. 2012. V. 29. No. 3. P. 1810–1816.

18. Lazarev V.F., Sverchinskyi D.V., Ippolitova M.V. et al. Factors affecting aggregate formation in cell models of Huntington’s disease and amyotrophic lateral sclerosis // Acta Naturae. 2013. V. 5. No. 2. P. 81–89.

19. Lein E.S., Hawrylycz M.J., Ao N. et al. Genome-wide atlas of gene expression in the adult mouse brain // Nature. 2007. V. 445. No. 7124. P. 168–176.

20. Lipovich L., Dachet F., Cai J. et al. Activity-dependent human brain coding/noncoding gene regulatory networks // Genetics. 2012. V. 192. No. 3. P. 1133–1148.

21. Liu-Yesucevitz L., Bassell G.J., Gitler A.D. et al. Local RNA translation at the synapse and in disease // J. Neurosci. 2011. V. 31. No. 45. P. 16086–16093.

22. Lohse I., Reilly P., Zaugg K. The CPT1C 5’UTR contains a repressing upstream open reading frame that is regulated by cellular energy availability and AMPK // PLoS One. 2011. V. 6. No. 9. e21486.

23. Manfredsson F.P., Bloom D.C., Mandel R.J. Regulated protein expression for in vivo gene therapy for neurological disorders: progress, strategies, and issues // Neurobiol. Dis. 2012. V. 48. No. 2. P. 212–221.

24. Menschaert G., Van Criekinge W., Notelaers T. et al. Deep proteome coverage based on ribosome profiling aids mass spectrometry-based protein and peptide discovery and provides evidence of alternative translation products and near-cognate translation initiation events // Mol. Cell Proteomics. 2013. V. 12. No. 7. P. 1780–1790.

25. Naumenko V.S., Kondaurova E.M., Popova N.K. On the role of brain 5-HT7 receptor in the mechanism of hypothermia: comparison with hypothermia mediated via 5-HT1A and 5-HT3 receptor // Neuropharmacology. 2011. V. 61. No. 8. P. 1360–1365.

26. Orlov Y.L., Zhou J., Lipovich L. et al. Quality assessment of the Affymetrix U133A&B probesets by target sequence mapping and expression data analysis // In Silico Biol. 2007. V. 7. No. 3. Р. 241–260.

27. Park J., Xu K., Park T., Yi S.V. What are the determinants of gene expression levels and breadths in the human genome? // Hum. Mol. Genet. 2012. V. 21. No. 1. P. 46–56.

28. Savinkova L., Drachkova I., Arshinova T. et al. An experimental verification of the predicted effects of promoter TATAbox polymorphisms associated with human diseases on interactions between the TATA boxes and TATA-binding protein // PLoS One. 2013. V. 8. No. 2. e54626.

29. Sidrauski C., Acosta-Alvear D., Khoutorsky A. et al. Pharmacological brake-release of mRNA translation enhances cognitive memory // eLife. 2013. V. 28. e00498.

30. Su A.I., Wiltshire T., Batalov S. et al. A gene atlas of the mouse and human protein-encoding transcriptomes // Proc. Natl Acad. Sci. USA. 2009. V. 101. No. 16. P. 6062–6067.

31. Sun X., Liu J., Crary J.F. et al. ATF4 protects against neuronal death in cellular Parkinson’s disease models by maintaining levels of parkin // J. Neurosci. 2013. V. 33. No. 6. P. 2398–2407.

32. Wei L.N. The RNA superhighway: axonal RNA trafficking of kappa opioid receptor mRNA for neurite growth // Integr. Biol. (Camb). 2011. V. 3. No. 1. P. 10–16.

33. Willis D.E., Twiss J.L. Regulation of protein levels in subcellular domains through mRNA transport and localized translation // Mol. Cell Proteomics. 2010. V. 9. No. 5. P. 952–962.

34. Woody J.L., Shoemaker R.C. Gene expression: sizing it all up // Front Genet. 2011. V. 2. Р. 70.

35. Wu C., Orozco C., Boyer J. et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources // Genome Biol. 2009. V. 10. No. 11. R130.

36. Xie J., Zhao T., Lee T. et al. Anisotropic path searching for automatic neuron reconstruction // Med. Image Anal. 2011. V. 15. No. 5. P. 680–689.

37. Zhang X., Sun S., Pu J.K. et al. Long non-coding RNA expression profiles predict clinical phenotypes in glioma // Neurobiol. Dis. 2012. V. 48. No. 1. P. 1–8.


Дополнительные файлы

Просмотров: 125

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)