Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Роль метилирования ДНК в нарушении костного метаболизма

https://doi.org/10.18699/VJ19.463

Аннотация

Остеопороз (ОП) является одним из многофакторных заболеваний и развивается на основе взаимодействия генетической компоненты с окружающей средой. Однако, несмотря на существенные достижения в понимании молекулярно-генетических аспектов этого заболевания и развитие методов диагностики, для остеопороза не регламентированы эпигенетические маркеры, прогнозирующие риск заболевания на доклинической стадии и позволяющие предсказать его течение и тяжесть с целью проведения профилактических мероприятий для снижения риска переломов. Расширение знаний в области биологии костной ткани, особенно в направлении генетики остеопороза и остеоиммунологии, позволило показать, что остеопороз возникает не только на основе гормональных или механических нарушений, а представляет собой сложный процесс деструкции костной ткани многофакториальной природы. Уменьшение костной массы, нарушение минерализации матрикса и изменение микроархитектуры кости могут иметь разные патогенетические схемы развития, и, кроме того, все еще остаются неизвестные звенья патогенеза ОП. Одним из таких звеньев, вероятно, является ДНК-метилирование, которое представляет собой механизм эпигенетической регуляции экспрессии генов. Ряд данных указывает на то, что этот механизм, наряду с регуляторными микроРНК и посттрансляционными модификациями, вносит существенный вклад в центральные процессы костного ремоделирования и роста костной ткани. Несмотря на это, результаты современных исследований значительно различаются, профиль метилирования ДНК у пациентов с остеопорозом не всегда воспроизводится в полногеномных исследованиях, до сих пор не определены биомаркеры первичного ОП на основе эпигенетических аберраций, воспроизводимые в различных популяциях. Поэтому актуальной задачей является выяснение значимости накопленных данных. Цель данного обзора – обобщение и систематизация данных о роли ДНК-метилирования в костном метаболизме в норме и патологии, формировании остеопороза, оценка достижений и тенденций в этой области исследований и технологий изучения ДНК-метилирования.

Об авторах

Б. И. Ялаев
Институт биохимии и генетики Уфимского научного центра Российской академии наук
Россия
Уфа


А. В. Тюрин
Башкирский государственный медицинский университет
Россия

кафедра госпитальной терапии,

Уфа



Р. Я. Миргалиева
Республиканский медико-генетический центр
Россия
Уфа


Р. И. Хусаинова
Институт биохимии и генетики Уфимского научного центра Российской академии наук; Республиканский медико-генетический центр
Россия
Уфа


Список литературы

1. Ванюшин Б.Ф. Эпигенетика сегодня и завтра. Вавиловский журнал генетики и селекции. 2013;17(4/2):805-832.

2. Гребенникова Т.А., Белая Ж.Е., Рожинская Л.Я., Мельниченко Г.А., Дедов И.И. Эпигенетические аспекты остеопороза. Вестн. РАМН. 2015;70(5):541-548. DOI 10.15690/vramn.v70.i5.1440.

3. Скрябин Н.А., Кашеварова А.А., Денисов Е.В., Лебедев И.Н. Методы исследования метилирования ДНК: возможности и перспективы использования в онкологии. Сиб. онкол. журн. 2013; 6:64-60.

4. Филина Ю.В., Габдулхакова А.Г., Арлеевская М.И. Методы анализа метилирования ДНК. Биохимия. 2012;8:15-18.

5. Эллис С.Д., Дженювейн Т., Рейнберг Д. (ред.) Эпигенетика. М.: Техносфера, 2010.

6. Baccarelli A. Techniques for epigenetic analysis. How to apply them to human and epidemiology studies. 2018. Available at https://cdn1.sph.harvard.edu/wp-content/uploads/sites/1291/2012/11/JacksonTutorial.pdf

7. Cheishvili D., Parashar S., Mahmood N., Arakelian A., Kremer R., Goltzman D., Szyf M., Rabbani S.A. Identification of an epigenetic signature of osteoporosis in blood DNA of postmenopausal women. J. Bone Miner. Res. 2018;1-34. DOI 10.1002/jbmr.3527.

8. Cho Y.D., Yoon W.J., Kim W.J., Woo K.M., Baek J.H., Lee G., Ku Y., van Wijnen A.J., Ryoo H.M. Epigenetic modifications and canonical wingless/int-1 class (WNT) signaling enable transdifferentiation of nonosteogenic cells into osteoblasts. J. Biol. Chem. 2014;289(29): 20120-20128. DOI 10.1074/jbc.M114.558064.

9. Colin D., Sanjay K.G., Raymond Y. Analysis of DNA methylation by pyrosequencing. Methods Mol. Biol. 2016;1343:249-264. DOI 10.1007/978-1-4939-2963-4_19.

10. Del Real A., Perez-Campo F.M., Fernandez A.F., Sanudo C., Ibarbia C.G., Perez-Nunez M.I., Criekinge W.V., Braspenning M., Alonso M.A., Fraga M.F., Riancho J.A. Differential analysis of genome-wide methylation and gene expression in mesenchymal stem cells of patients with fractures and osteoarthritis. Epigenetics. 2017; 12(2):113-122. DOI 10.1080/15592294.2016.1271854.

11. Delgado-Calle J., Sanudo C., Bolado A., Fernandez A.F., Arozamena J., Pascual-Carra M.A., Rodriguez-Rey J.C., Fraga M.F., Bonewald L., Riancho J.A. DNA methylation contributes to the regulation of sclerostin expression in human osteocytes. J. Bone Miner. Res. 2012;27(4):926-937. DOI 10.1002/jbmr.1491.

12. Ghayor C., Weber F.E. Epigenetic regulation of bone remodeling and its impacts in osteoporosis. Int. J. Mol. Sci. 2016;17(8):E1446. DOI 10.3390/ijms17091446.

13. Gupta R., Nagarajan A., Wajapeyee N. Advances in genome-wide DNA methylation analysis. BioTechniques. 2010;49(4):3-11. DOI 10.2144/000113493.

14. Harvey N., Dennison E., Cooper C. Osteoporosis: a lifecourse approach. J. Bone Miner. Res. 2014;29(9):1917-1925. DOI 10.1002/jbmr.2286.

15. Hussmann D., Hansen L.L. Methylation-Sensitive High Resolution Melting (MS-HRM). Methods Mol. Biol. 2018;1708:551-571. DOI 10.1007/978-1-4939-7481-8_28.

16. Ku J.L., Jeon Y.K., Park J.G. Methylation-specific PCR. Methods Mol. Biol. 2011;791:23-32. DOI 10.1007/978-1-61779-316-5_3.

17. Kurdyukov S., Bullock M. DNA methylation analysis: choosing the right method. Biology. 2016;5(1):3. DOI 10.3390/biology5010003.

18. Lee J.Y., Lee Y.M., Kim M.J., Choi J.Y., Park E.K., Kim S.Y., Lee S.P., Yang J.S., Kim D.S. Methylation of the mouse DIx5 and Osx gene promoters regulates cell type-specific gene expression. Mol. Cell. 2006;22(2):182-188.

19. Li P., Demirci F., Mahalingam G., Demirci C., Nakano M., Meyers B.C. An integrated workflow for DNA methylation analysis. J. Genet. Genomics. 2013;40(5):249-260. DOI 10.1016/j.jgg.2013.03.010.

20. Li X., Zhang Y., Kang H., Liu W., Liu P., Zhang J., Harris S.E., Wu D. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 2005;280(20):19883-19887. DOI 10.1074/jbc.M413274200.

21. Marini F., Cianferotti L., Brandi M.L. Epigenetic mechanisms in bone biology and osteoporosis: Can they drive therapeutic choices? Int. J. Mol. Sci. 2016;17(8):1329. DOI 10.3390/ijms17081329.

22. Moore L.D., Le T., Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23-28. DOI 10.1038/npp.2012.112.

23. Morris J.A., Tsai P.C., Joehanes R., Zheng J., Trajanoska K., Soerensen M., Forgetta V., Castillo-Fernandez J., Frost M., Spector T.D., Christensen K., Christiansen L., Rivadeneira F., Tobias J., Evans D., Kiel D.P., Hsu Y.H., Richards J.B., Bell J.T. Epigenome-wide association of DNA methylation in whole blood with bone mineral density. J. Bone Miner. Res. 2017;32(8):1644-1650. DOI 10.1002/jbmr.3148.

24. Moskalev A.A., Vaiserman A. (Eds.). Epigenetics of Aging and Longevity. London: Acad. Press, 2018. Olkhov-Mitsel E., Zdravic D., Kron K. Novel multiplex MethyLight protocol for detection of DNA methylation in patient tissues and bodily fluids. Sci. Rep. 2014;4:4432. DOI 10.1038/srep04432.

25. Reppe S., Datta H., Gautvik K.M. The Influence of DNA methylation on bone cells. Curr. Genomics. 2015;16(6):384-392. DOI 10.2174/1389202916666150817202913.

26. Reppe S., Lien T.G., Hsu Y.H., Gautvik V.T., Olstad O.K., Yu R., Bakke H.G., Lyle R., Kringen M.K., Glad I.K., Gautvik K.M. Distinct DNA methylation profiles in bone and blood of osteoporotic and healthy postmenopausal women. Epigenetics. 2017;12(8):674687. DOI 10.1080/15592294.2017.1345832.

27. Rojas A., Aguilar R., Henriquez B., Lian J.B., Stein J.L., Stein G.S., van Wijnen A.J., van Zundert B., Allende M.L., Montecino M. Epigenetic control of the bone-master Runx2 gene during osteoblast-lineage commitment by the histone demethylase JARID1B/ KDM5B. J. Biol. Chem. 2015;290(47):28329-28342. DOI 10.1074/jbc.M115.657825.

28. Sozen T., Ozışık L., Başaran N.C. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017;4(1):46-56. DOI 10.5152/eurjrheum.2016.048.

29. Epub 2016 Dec 30. Susan E.C., Jurgen D., Nancy S.G. A real-time PCR assay for DNAmethylation using methylation-specific blockers. Nucleic Acids Res. 2004;32(1):e10. DOI 10.1093/nar/gnh008.

30. Tarantino U., Iolascon G., Cianferotti L., Masi L., Marcucci G., Giusti F., Marini F., Parri S., Feola M., Rao C., Piccirilli E., Zanetti E.B., Cittadini N., Alvaro R., Moretti A., Calafiore D., Toro G., Gimigliano F., Resmini G., Brandi M.L. Clinical guidelines for the prevention and treatment of osteoporosis: summary statements and recommendations from the Italian Society for Orthopaedics and Traumatology. J. Orthop. Traumatol. 2017;18(Suppl.1):3-36. DOI 10.1007/s10195-017-0474-7.

31. Tarfiei G., Noruzinia M., Soleimani M., Kaviani S., Mahmoodinia M.M., Farshdousti Hagh M., Pujol P. ROR2 promoter methylation change in osteoblastic differentiation of mesenchymal stem cells. Cell J. 2011;13(1):11-15.

32. Tu K.N., Lie J.D., Wan C.K.V., Cameron M., Austel A.G., Nguyen J.K., Van K., Hyun D. Osteoporosis: A review of treatment options. Phys. Ther. 2018;43(2):92-104.

33. Wojdacz T.K., Dobrovic A. Methylation-sensitive high resolution melting (MS-HRM): A new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res. 2007;35(6):e41. DOI 10.1093/nar/gkm013.

34. Wong H.L., Byun H.M., Kwan J.M., Campan M., Ingles S.A., Laird P.W., Yang A.S. Rapid and quantitative method of allele-specific DNA methylation analysis. BioTechniques. 2006;41(6):734739. DOI 10.2144/000112305.

35. Yi-an C., Mathieu L., Sanaa C., Darci T.B., Daria G., Brent W.Z., Steven G., Thomas J.H., Rosanna W. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetic. 2013;8(2):203-209. DOI 10.4161/epi.23470.

36. Zhang D., Li Q., Rao L., Yi B., Xu Q. Effect of 5-Aza-2ʹ-deoxycytidine on оdontogenic differentiation of human dental pulp cells. J. Endod. 2015;41(5):640-645. DOI 10.1016/j.joen.2014.12.006.

37. Zhang J.G., Tan L.J., Xu C., Hao H., Qing T., Yu Z., Chuan Q., XiangDing C., Hong-Wen D. Integrative analysis of transcriptomic and epigenomic data to reveal regulation patterns for BMD variation. PLoS One. 2015;10(9):e0138524. DOI 10.1371/journal.pone.0138524.


Рецензия

Просмотров: 702


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)