Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The role of DNA methylation in the disorders of bone metabolism

https://doi.org/10.18699/VJ19.463

Abstract

Osteoporosis is one of multifactorial diseases, it develops from interactions between the genetic component and the environment. However, the universal epigenetic markers of osteoporosis are not yet defined. Finding the risk factors will predict the risk of osteoporosis at the preclinical stage, help define the course and severity of the disease, and develop preventive measures based on them to reduce the risk of fractures. Expanding knowledge in the field of bone biology, especially in the genetics of osteoporosis and osteoimmunology, showed that osteoporosis is a disease that occurs not only due to hormonal or mechanical disorders, but also as a clinically and genetically heterogeneous disease, and there are still unknown pathogenetic links in its structure. Decreases in bone mass and matrix mineralization as well as changes in bone microarchitecture can have different pathogenetic patterns of development and, moreover, there are unknown links of the pathogenesis of osteoporosis. It is possible that DNA methylation is one of these links and a mechanism for epigenetic regulation of gene expression. Evidence exists that this mechanism alongside regulatory miRNAs and post-translational modifications makes a significant contribution to the central processes of bone remodeling; however, the results of various studies vary greatly, and, therefore, there is a need to understand the significance of the accumulated data and to make them consistent. The purpose of this review is to compile and systematize data on the role of DNA methylation in bone metabolism in normal and pathological conditions, in the formation of osteoporosis, and to assess achievements and trends in this field of research and technologies for studying DNA methylation.

About the Authors

B. I. Yalaev
Institute of Biochemistry and Genetics of Ufa Science Centre RAS
Russian Federation
Ufa


A. V. Tyurin
Bashkir State Medical University
Russian Federation
Ufa


R. Y. Mirgalieva
Republican Medical-Genetic Center
Russian Federation
Ufa


R. I. Khusainova
Institute of Biochemistry and Genetics of Ufa Science Centre RAS; Republican Medical-Genetic Center
Russian Federation
Ufa


References

1. Vanyushin B.F. Epigenetics today and tomorrow. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2):805-832. (in Russian)

2. Grebennikova T.A., Belaya Z.E., Rozhinskaya L.Y., Mel’nichenko G.A., Dedov I.I. Epigenetic aspects of osteoporosis. Vestnik Rossiyskoy Akademii Meditsinskikh Nauk = Annals of the Russian Academy of Medical Sciences. 2015;70(5):541-548. DOI 10.15690/ vramn.v70.i5.1440. (in Russian)

3. Skryabin N.A., Kashevarova A.A., Denisov E.V., Lebedev I.N. Methods of DNA methylation analysis: potential and limitations of their application in oncology. Sibirskii Onkologicheskii Zhurnal = Siberian Journal of Oncology. 2013;6:64-60. (in Russian)

4. Filina Yu.V., Gabdulkhakova A.G., Arleyevskaya M.I. The methods of analysis of DNA methylation. Biokhimiya = Biochemistry. 2012; 8:15-18. (in Russian)

5. Allis C.D., Jenuwein T., Reinberg D. (Eds.) Epigenetics. New York: Cold Spring Harbor Laboratory Press, 2007. (Russ. ed.: Ellis S.D., Dzhenyuveyn T., Reynberg D. (red.) Epigenetika. Moscow: Tekhnosfera Publ., 2010. (in Russian))

6. Baccarelli A. Techniques for epigenetic analysis. How to apply them to human and epidemiology studies. 2018. Available at https://cdn1.sph.harvard.edu/wp-content/uploads/sites/1291/2012/11/JacksonTutorial.pdf

7. Cheishvili D., Parashar S., Mahmood N., Arakelian A., Kremer R., Goltzman D., Szyf M., Rabbani S.A. Identification of an epigenetic signature of osteoporosis in blood DNA of postmenopausal women. J. Bone Miner. Res. 2018;1-34. DOI 10.1002/jbmr.3527.

8. Cho Y.D., Yoon W.J., Kim W.J., Woo K.M., Baek J.H., Lee G., Ku Y., van Wijnen A.J., Ryoo H.M. Epigenetic modifications and canonical wingless/int-1 class (WNT) signaling enable transdifferentiation of nonosteogenic cells into osteoblasts. J. Biol. Chem. 2014;289(29): 20120-20128. DOI 10.1074/jbc.M114.558064.

9. Colin D., Sanjay K.G., Raymond Y. Analysis of DNA methylation by pyrosequencing. Methods Mol. Biol. 2016;1343:249-264. DOI 10.1007/978-1-4939-2963-4_19.

10. Del Real A., Perez-Campo F.M., Fernandez A.F., Sanudo C., Ibarbia C.G., Perez-Nunez M.I., Criekinge W.V., Braspenning M., Alonso M.A., Fraga M.F., Riancho J.A. Differential analysis of genome-wide methylation and gene expression in mesenchymal stem cells of patients with fractures and osteoarthritis. Epigenetics. 2017; 12(2):113-122. DOI 10.1080/15592294.2016.1271854.

11. Delgado-Calle J., Sanudo C., Bolado A., Fernandez A.F., Arozamena J., Pascual-Carra M.A., Rodriguez-Rey J.C., Fraga M.F., Bonewald L., Riancho J.A. DNA methylation contributes to the regulation of sclerostin expression in human osteocytes. J. Bone Miner. Res. 2012;27(4):926-937. DOI 10.1002/jbmr.1491.

12. Ghayor C., Weber F.E. Epigenetic regulation of bone remodeling and its impacts in osteoporosis. Int. J. Mol. Sci. 2016;17(8):E1446. DOI 10.3390/ijms17091446.

13. Gupta R., Nagarajan A., Wajapeyee N. Advances in genome-wide DNA methylation analysis. BioTechniques. 2010;49(4):3-11. DOI 10.2144/000113493.

14. Harvey N., Dennison E., Cooper C. Osteoporosis: a lifecourse approach. J. Bone Miner. Res. 2014;29(9):1917-1925. DOI 10.1002/jbmr.2286.

15. Hussmann D., Hansen L.L. Methylation-Sensitive High Resolution Melting (MS-HRM). Methods Mol. Biol. 2018;1708:551-571. DOI 10.1007/978-1-4939-7481-8_28.

16. Ku J.L., Jeon Y.K., Park J.G. Methylation-specific PCR. Methods Mol. Biol. 2011;791:23-32. DOI 10.1007/978-1-61779-316-5_3.

17. Kurdyukov S., Bullock M. DNA methylation analysis: choosing the right method. Biology. 2016;5(1):3. DOI 10.3390/biology5010003.

18. Lee J.Y., Lee Y.M., Kim M.J., Choi J.Y., Park E.K., Kim S.Y., Lee S.P., Yang J.S., Kim D.S. Methylation of the mouse DIx5 and Osx gene promoters regulates cell type-specific gene expression. Mol. Cell. 2006;22(2):182-188.

19. Li P., Demirci F., Mahalingam G., Demirci C., Nakano M., Meyers B.C. An integrated workflow for DNA methylation analysis. J. Genet. Genomics. 2013;40(5):249-260. DOI 10.1016/j.jgg.2013.03.010.

20. Li X., Zhang Y., Kang H., Liu W., Liu P., Zhang J., Harris S.E., Wu D. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 2005;280(20):19883-19887. DOI 10.1074/jbc.M413274200.

21. Marini F., Cianferotti L., Brandi M.L. Epigenetic mechanisms in bone biology and osteoporosis: Can they drive therapeutic choices? Int. J. Mol. Sci. 2016;17(8):1329. DOI 10.3390/ijms17081329.

22. Moore L.D., Le T., Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23-28. DOI 10.1038/npp.2012.112.

23. Morris J.A., Tsai P.C., Joehanes R., Zheng J., Trajanoska K., Soerensen M., Forgetta V., Castillo-Fernandez J., Frost M., Spector T.D., Christensen K., Christiansen L., Rivadeneira F., Tobias J., Evans D., Kiel D.P., Hsu Y.H., Richards J.B., Bell J.T. Epigenome-wide association of DNA methylation in whole blood with bone mineral density. J. Bone Miner. Res. 2017;32(8):1644-1650. DOI 10.1002/jbmr.3148.

24. Moskalev A.A., Vaiserman A. (Eds.). Epigenetics of Aging and Longevity. London: Acad. Press, 2018. Olkhov-Mitsel E., Zdravic D., Kron K. Novel multiplex MethyLight protocol for detection of DNA methylation in patient tissues and bodily fluids. Sci. Rep. 2014;4:4432. DOI 10.1038/srep04432.

25. Reppe S., Datta H., Gautvik K.M. The Influence of DNA methylation on bone cells. Curr. Genomics. 2015;16(6):384-392. DOI 10.2174/1389202916666150817202913.

26. Reppe S., Lien T.G., Hsu Y.H., Gautvik V.T., Olstad O.K., Yu R., Bakke H.G., Lyle R., Kringen M.K., Glad I.K., Gautvik K.M. Distinct DNA methylation profiles in bone and blood of osteoporotic and healthy postmenopausal women. Epigenetics. 2017;12(8):674687. DOI 10.1080/15592294.2017.1345832.

27. Rojas A., Aguilar R., Henriquez B., Lian J.B., Stein J.L., Stein G.S., van Wijnen A.J., van Zundert B., Allende M.L., Montecino M. Epigenetic control of the bone-master Runx2 gene during osteoblast-lineage commitment by the histone demethylase JARID1B/ KDM5B. J. Biol. Chem. 2015;290(47):28329-28342. DOI 10.1074/jbc.M115.657825.

28. Sozen T., Ozışık L., Başaran N.C. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017;4(1):46-56. DOI 10.5152/eurjrheum.2016.048.

29. Epub 2016 Dec 30. Susan E.C., Jurgen D., Nancy S.G. A real-time PCR assay for DNAmethylation using methylation-specific blockers. Nucleic Acids Res. 2004;32(1):e10. DOI 10.1093/nar/gnh008.

30. Tarantino U., Iolascon G., Cianferotti L., Masi L., Marcucci G., Giusti F., Marini F., Parri S., Feola M., Rao C., Piccirilli E., Zanetti E.B., Cittadini N., Alvaro R., Moretti A., Calafiore D., Toro G., Gimigliano F., Resmini G., Brandi M.L. Clinical guidelines for the prevention and treatment of osteoporosis: summary statements and recommendations from the Italian Society for Orthopaedics and Traumatology. J. Orthop. Traumatol. 2017;18(Suppl.1):3-36. DOI 10.1007/s10195-017-0474-7.

31. Tarfiei G., Noruzinia M., Soleimani M., Kaviani S., Mahmoodinia M.M., Farshdousti Hagh M., Pujol P. ROR2 promoter methylation change in osteoblastic differentiation of mesenchymal stem cells. Cell J. 2011;13(1):11-15.

32. Tu K.N., Lie J.D., Wan C.K.V., Cameron M., Austel A.G., Nguyen J.K., Van K., Hyun D. Osteoporosis: A review of treatment options. Phys. Ther. 2018;43(2):92-104.

33. Wojdacz T.K., Dobrovic A. Methylation-sensitive high resolution melting (MS-HRM): A new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res. 2007;35(6):e41. DOI 10.1093/nar/gkm013.

34. Wong H.L., Byun H.M., Kwan J.M., Campan M., Ingles S.A., Laird P.W., Yang A.S. Rapid and quantitative method of allele-specific DNA methylation analysis. BioTechniques. 2006;41(6):734739. DOI 10.2144/000112305.

35. Yi-an C., Mathieu L., Sanaa C., Darci T.B., Daria G., Brent W.Z., Steven G., Thomas J.H., Rosanna W. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetic. 2013;8(2):203-209. DOI 10.4161/epi.23470.

36. Zhang D., Li Q., Rao L., Yi B., Xu Q. Effect of 5-Aza-2ʹ-deoxycytidine on оdontogenic differentiation of human dental pulp cells. J. Endod. 2015;41(5):640-645. DOI 10.1016/j.joen.2014.12.006.

37. Zhang J.G., Tan L.J., Xu C., Hao H., Qing T., Yu Z., Chuan Q., XiangDing C., Hong-Wen D. Integrative analysis of transcriptomic and epigenomic data to reveal regulation patterns for BMD variation. PLoS One. 2015;10(9):e0138524. DOI 10.1371/journal.pone.0138524.


Review

Views: 737


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)