1. Vanyushin B.F. Epigenetics today and tomorrow. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2):805-832. (in Russian)
2. Grebennikova T.A., Belaya Z.E., Rozhinskaya L.Y., Mel’nichenko G.A., Dedov I.I. Epigenetic aspects of osteoporosis. Vestnik Rossiyskoy Akademii Meditsinskikh Nauk = Annals of the Russian Academy of Medical Sciences. 2015;70(5):541-548. https://doi.org/10.15690/ vramn.v70.i5.1440. (in Russian)
3. Skryabin N.A., Kashevarova A.A., Denisov E.V., Lebedev I.N. Methods of DNA methylation analysis: potential and limitations of their application in oncology. Sibirskii Onkologicheskii Zhurnal = Siberian Journal of Oncology. 2013;6:64-60. (in Russian)
4. Filina Yu.V., Gabdulkhakova A.G., Arleyevskaya M.I. The methods of analysis of DNA methylation. Biokhimiya = Biochemistry. 2012; 8:15-18. (in Russian)
5. Allis C.D., Jenuwein T., Reinberg D. (Eds.) Epigenetics. New York: Cold Spring Harbor Laboratory Press, 2007. (Russ. ed.: Ellis S.D., Dzhenyuveyn T., Reynberg D. (red.) Epigenetika. Moscow: Tekhnosfera Publ., 2010. (in Russian))
6. Baccarelli A. Techniques for epigenetic analysis. How to apply them to human and epidemiology studies. 2018. Available at https://cdn1.sph.harvard.edu/wp-content/uploads/sites/1291/2012/11/JacksonTutorial.pdf
7. Cheishvili D., Parashar S., Mahmood N., Arakelian A., Kremer R., Goltzman D., Szyf M., Rabbani S.A. Identification of an epigenetic signature of osteoporosis in blood DNA of postmenopausal women. J. Bone Miner. Res. 2018;1-34. https://doi.org/10.1002/jbmr.3527.
8. Cho Y.D., Yoon W.J., Kim W.J., Woo K.M., Baek J.H., Lee G., Ku Y., van Wijnen A.J., Ryoo H.M. Epigenetic modifications and canonical wingless/int-1 class (WNT) signaling enable transdifferentiation of nonosteogenic cells into osteoblasts. J. Biol. Chem. 2014;289(29): 20120-20128. https://doi.org/10.1074/jbc.M114.558064.
9. Colin D., Sanjay K.G., Raymond Y. Analysis of DNA methylation by pyrosequencing. Methods Mol. Biol. 2016;1343:249-264. https://doi.org/10.1007/978-1-4939-2963-4_19.
10. Del Real A., Perez-Campo F.M., Fernandez A.F., Sanudo C., Ibarbia C.G., Perez-Nunez M.I., Criekinge W.V., Braspenning M., Alonso M.A., Fraga M.F., Riancho J.A. Differential analysis of genome-wide methylation and gene expression in mesenchymal stem cells of patients with fractures and osteoarthritis. Epigenetics. 2017; 12(2):113-122. https://doi.org/10.1080/15592294.2016.1271854.
11. Delgado-Calle J., Sanudo C., Bolado A., Fernandez A.F., Arozamena J., Pascual-Carra M.A., Rodriguez-Rey J.C., Fraga M.F., Bonewald L., Riancho J.A. DNA methylation contributes to the regulation of sclerostin expression in human osteocytes. J. Bone Miner. Res. 2012;27(4):926-937. https://doi.org/10.1002/jbmr.1491.
12. Ghayor C., Weber F.E. Epigenetic regulation of bone remodeling and its impacts in osteoporosis. Int. J. Mol. Sci. 2016;17(8):E1446. https://doi.org/10.3390/ijms17091446.
13. Gupta R., Nagarajan A., Wajapeyee N. Advances in genome-wide DNA methylation analysis. BioTechniques. 2010;49(4):3-11. https://doi.org/10.2144/000113493.
14. Harvey N., Dennison E., Cooper C. Osteoporosis: a lifecourse approach. J. Bone Miner. Res. 2014;29(9):1917-1925. https://doi.org/10.1002/jbmr.2286.
15. Hussmann D., Hansen L.L. Methylation-Sensitive High Resolution Melting (MS-HRM). Methods Mol. Biol. 2018;1708:551-571. https://doi.org/10.1007/978-1-4939-7481-8_28.
16. Ku J.L., Jeon Y.K., Park J.G. Methylation-specific PCR. Methods Mol. Biol. 2011;791:23-32. https://doi.org/10.1007/978-1-61779-316-5_3.
17. Kurdyukov S., Bullock M. DNA methylation analysis: choosing the right method. Biology. 2016;5(1):3. https://doi.org/10.3390/biology5010003.
18. Lee J.Y., Lee Y.M., Kim M.J., Choi J.Y., Park E.K., Kim S.Y., Lee S.P., Yang J.S., Kim D.S. Methylation of the mouse DIx5 and Osx gene promoters regulates cell type-specific gene expression. Mol. Cell. 2006;22(2):182-188.
19. Li P., Demirci F., Mahalingam G., Demirci C., Nakano M., Meyers B.C. An integrated workflow for DNA methylation analysis. J. Genet. Genomics. 2013;40(5):249-260. https://doi.org/10.1016/j.jgg.2013.03.010.
20. Li X., Zhang Y., Kang H., Liu W., Liu P., Zhang J., Harris S.E., Wu D. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 2005;280(20):19883-19887. https://doi.org/10.1074/jbc.M413274200.
21. Marini F., Cianferotti L., Brandi M.L. Epigenetic mechanisms in bone biology and osteoporosis: Can they drive therapeutic choices? Int. J. Mol. Sci. 2016;17(8):1329. https://doi.org/10.3390/ijms17081329.
22. Moore L.D., Le T., Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23-28. https://doi.org/10.1038/npp.2012.112.
23. Morris J.A., Tsai P.C., Joehanes R., Zheng J., Trajanoska K., Soerensen M., Forgetta V., Castillo-Fernandez J., Frost M., Spector T.D., Christensen K., Christiansen L., Rivadeneira F., Tobias J., Evans D., Kiel D.P., Hsu Y.H., Richards J.B., Bell J.T. Epigenome-wide association of DNA methylation in whole blood with bone mineral density. J. Bone Miner. Res. 2017;32(8):1644-1650. https://doi.org/10.1002/jbmr.3148.
24. Moskalev A.A., Vaiserman A. (Eds.). Epigenetics of Aging and Longevity. London: Acad. Press, 2018. Olkhov-Mitsel E., Zdravic D., Kron K. Novel multiplex MethyLight protocol for detection of DNA methylation in patient tissues and bodily fluids. Sci. Rep. 2014;4:4432. https://doi.org/10.1038/srep04432.
25. Reppe S., Datta H., Gautvik K.M. The Influence of DNA methylation on bone cells. Curr. Genomics. 2015;16(6):384-392. https://doi.org/10.2174/1389202916666150817202913.
26. Reppe S., Lien T.G., Hsu Y.H., Gautvik V.T., Olstad O.K., Yu R., Bakke H.G., Lyle R., Kringen M.K., Glad I.K., Gautvik K.M. Distinct DNA methylation profiles in bone and blood of osteoporotic and healthy postmenopausal women. Epigenetics. 2017;12(8):674687. https://doi.org/10.1080/15592294.2017.1345832.
27. Rojas A., Aguilar R., Henriquez B., Lian J.B., Stein J.L., Stein G.S., van Wijnen A.J., van Zundert B., Allende M.L., Montecino M. Epigenetic control of the bone-master Runx2 gene during osteoblast-lineage commitment by the histone demethylase JARID1B/ KDM5B. J. Biol. Chem. 2015;290(47):28329-28342. https://doi.org/10.1074/jbc.M115.657825.
28. Sozen T., Ozışık L., Başaran N.C. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017;4(1):46-56. https://doi.org/10.5152/eurjrheum.2016.048.
29. Epub 2016 Dec 30. Susan E.C., Jurgen D., Nancy S.G. A real-time PCR assay for DNAmethylation using methylation-specific blockers. Nucleic Acids Res. 2004;32(1):e10. https://doi.org/10.1093/nar/gnh008.
30. Tarantino U., Iolascon G., Cianferotti L., Masi L., Marcucci G., Giusti F., Marini F., Parri S., Feola M., Rao C., Piccirilli E., Zanetti E.B., Cittadini N., Alvaro R., Moretti A., Calafiore D., Toro G., Gimigliano F., Resmini G., Brandi M.L. Clinical guidelines for the prevention and treatment of osteoporosis: summary statements and recommendations from the Italian Society for Orthopaedics and Traumatology. J. Orthop. Traumatol. 2017;18(Suppl.1):3-36. https://doi.org/10.1007/s10195-017-0474-7.
31. Tarfiei G., Noruzinia M., Soleimani M., Kaviani S., Mahmoodinia M.M., Farshdousti Hagh M., Pujol P. ROR2 promoter methylation change in osteoblastic differentiation of mesenchymal stem cells. Cell J. 2011;13(1):11-15.
32. Tu K.N., Lie J.D., Wan C.K.V., Cameron M., Austel A.G., Nguyen J.K., Van K., Hyun D. Osteoporosis: A review of treatment options. Phys. Ther. 2018;43(2):92-104.
33. Wojdacz T.K., Dobrovic A. Methylation-sensitive high resolution melting (MS-HRM): A new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res. 2007;35(6):e41. https://doi.org/10.1093/nar/gkm013.
34. Wong H.L., Byun H.M., Kwan J.M., Campan M., Ingles S.A., Laird P.W., Yang A.S. Rapid and quantitative method of allele-specific DNA methylation analysis. BioTechniques. 2006;41(6):734739. https://doi.org/10.2144/000112305.
35. Yi-an C., Mathieu L., Sanaa C., Darci T.B., Daria G., Brent W.Z., Steven G., Thomas J.H., Rosanna W. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetic. 2013;8(2):203-209. https://doi.org/10.4161/epi.23470.
36. Zhang D., Li Q., Rao L., Yi B., Xu Q. Effect of 5-Aza-2ʹ-deoxycytidine on odontogenic differentiation of human dental pulp cells. J. Endod. 2015;41(5):640-645. https://doi.org/10.1016/j.joen.2014.12.006.
37. Zhang J.G., Tan L.J., Xu C., Hao H., Qing T., Yu Z., Chuan Q., XiangDing C., Hong-Wen D. Integrative analysis of transcriptomic and epigenomic data to reveal regulation patterns for BMD variation. PLoS One. 2015;10(9):e0138524. https://doi.org/10.1371/journal.pone.0138524.