Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Effects of radiation and manganese oxide nanoparticles on human glioblastoma cell line U-87 MG glycolysis

https://doi.org/10.18699/VJ19.465

Abstract

Gliomas are the most common type of malignant brain tumors. Standard treatment of gliomas consists of surgical excision of the tumor with subsequent chemotherapy and radiotherapy. Tumor cells are characterized by rapid division with an increased uptake of glucose and its catabolism during glycolysis. To maintain rapid division, the level of glycolysis of the tumor cell is significantly increased, compared with normal cells. It is known that some nanoparticles (NP) have the property of accumulating in tumors. In particular, NPs of manganese oxide can penetrate into the brain and, with considerable accumulation, cause toxic effects. These facts served as a prerequisite for studying the effects of manganese oxide NPs on the viability of glioma cells. The purpose of this work was to study the effects of manganese oxide NPs, as well as their combination with gamma irradiation on the glycolysis of glioma cells. The cells were irradiated using the research radiobiological gamma-installation IGUR-1 based on 137Cs. The level of cell glycolysis was determined using the standard glycolytic stress test on a Seahorse XFp platform. Cell viability was determined using the ViaCount reagent staining of living and dead cells. Their count was performed using flow cytometry. We showed that the glycolysis of U-87 MG glioma cells was significantly reduced when incubated for 48 hours with manganese oxide NPs. Irradiation in combination with NPs or alone did not have significant effects on glycolysis of gliomas. Glioma incubation with manganese oxide NPs for 72 hours led to a significant reduction in cell viability. This study may be useful for the development of new therapies and diagnosis of gliomas.

About the Authors

N. B. Illarionova
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


D. V. Petrovski
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


I. A. Razumov
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


E. L. Zavyalov
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


References

1. Zavjalov E.L., Razumov I.A., Gerlinskaya L.A., Romashchenko A.V. In vivo MRI visualization of growth and morphology in the orthotopic xenotrasplantation U87 glioblastoma mouse SCID model. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2015;19(4):460-465. DOI 10.18699/J15.061. (in Russian)

2. Caruso G., Caffo M., Alafaci C., Raudino G., Cafarella D., Lucerna S., Salpietro F.M., Tomasello F. Could nanoparticle systems have a role in the treatment of cerebral gliomas? Nanomedicine. 2011;7(6):744752. DOI 10.1016/j.nano.2011.02.008.

3. Claes A., Idema A.J., Wesseling P. Diffuse glioma growth: a guerilla war. Acta Neuropathol. 2007;114(5):443-458. DOI 10.1007/s00401007-0293-7.

4. Hernandez-Pedro N.Y., Rangel-Lopez E., Magana-Maldonado R., de la Cruz V.P., del Angel A.S., Pineda B., Sotelo J. Application of nanoparticles on diagnosis and therapy in gliomas. Biomed. Res. Int. 2013;351031:1-20. DOI 10.1155/2013/351031.

5. Kuper K.E., Zavjalov E.L., Razumov I.А., Romaschenko A.V., Stupak A.S., Troicky S.Yu., Goldenberg B.G., Legkodymov А.G., Lemzyakov A.A., Moshkin M.P. Cytopathic effects of X-ray irradiation and MnO nanoparticles on human glioblastoma (U87). Physics Procedia. 2016;84:252-255. DOI 10.1016/j.phpro.2016.11.043.

6. Landgraf L., Muller I., Ernst P., Schafer M., Rosman C., Schick I., Kohler O., Oehring H., Breus V.V., Basche T., Sönnichsen C., Treme W., Hilger I. Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization. Beilstein J. Nanotechnol. 2015;6:300-312. DOI 10.3762/bjnano.6.28.

7. Lenting K., Verhaak R., Ter Laan M., Wesseling P., Leenders W. Glioma: Experimental models and reality. Acta Neuropathol. 2017; 133(2):263-282. DOI 10.1007/s00401-017-1671-4.

8. Louis D.N., Perry A., Reifenberger G., von Deimling A., FigarellaBranger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 2016;131(6):803-820. DOI 10.1007/s00401-016-1545-1.

9. Naidu M.D., Mason J.M., Pica R.V., Fung H., Pena L.A. Radiation resistance in glioma cells determined by DNA damage repair activity of Ape1/Ref-1. J. Radiat. Res. 2010;51(4):393-404. DOI 10.1269/jrr.09077.

10. Oh N., Park J.H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomedicine. 2014;9(1):51-63. DOI 10.2147/IJN.S26592.

11. Pavlova N.N., Thompson C.B. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23(1):27-47. DOI 10.1016/j.cmet.2015. 12.006.

12. Poteet E., Choudhury G.R., Winters A., Li W., Ryou M.G., Liu R., Tang L., Ghorpade A., Wen Y., Yuan F., Keir S.T., Yan H., Bigner D.D., Simpkins J.W., Yang S.H. Reversing the Warburg effect as a treatment for glioblastoma. J. Biol. Chem. 2013;288(13):91539164. DOI 10.1074/jbc.AAC118.005625.

13. Razumov I.A., Zavjalov E.L.,Troitskii S.Y.,Romashchenko A.V., Petrovskii D.V., Kuper K.E., Moshkin M.P. Selective cytotoxicity of manganese nanoparticles against human glioblastoma cells. Bull. Exp. Biol. Med. 2017;163(4):561-565. DOI 10.1007/s10517-017-3849-0.

14. Sarkaria J.N., Kitange G.J., James C.D., Plummer R., Calvert H., Weller M., Wick W. Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin. Cancer Res. 2008;14(10):29002908. DOI 10.1158/1078-0432.CCR-07-1719.

15. Steichen S.D., Caldorera-Moore M., Peppas N.A. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci. 2013;48(3):416-427. DOI 10.1016/j.ejps.2012.12.006.

16. Stupp R., Hegi M.E., Mason W.P., van den Bent M.J., Taphoorn M.J., Janzer R.C., Ludwin S.K., Allgeier A., Fisher B., Belanger K., Hau P., Brandes A.A., Gijtenbeek J., Marosi C., Vecht C.J., Mokhtari K., Wesseling P., Villa S., Eisenhauer E., Gorlia T., Weller M., Lacombe D., Cairncross J.G., Mirimanoff R.O. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459-466. DOI 10.1016/S1470-2045(09)70025-7.

17. Tran S., DeGiovanni P.J., Piel B., Rai P. Cancer nanomedicine:Areview of recent success in drug delivery. Clin. Transl. Med. 2017;6(1):44. DOI 10.1186/s40169-017-0175-0.

18. Tzeng S.Y., Green J.J. Therapeutic nanomedicine for brain cancer. Ther. Deliv. 2013;4(6):687-704. DOI 10.4155/tde.13.38.

19. Vinardell M.P., Mitjans M. Antitumor activities of metal oxide nanoparticles. Nanomaterials (Basel). 2015;5(2):1004-1021. DOI 10.3390/nano5021004.

20. Warburg O., Wind F., Negelein E. The metabolism of tumors in the body. J. Gen. Physiol. 1927;8(6):519-530.


Review

Views: 1090


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)