Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Microspore embryogenesis in vitro: the role of stresses

https://doi.org/10.18699/VJ19.466

Abstract

Gametic embryogenesis is one form of totipotency of plant cells, in which either male or female gametes are induced to form embryoids (sporophytes). Regeneration of haploid plants from embryoids and subsequent chromosome duplication result in doubled haploids and DH-lines. The production of haploids and doubled haploids (DHs) through gametic embryogenesis allows a single-stage development of complete homozygous lines from heterozygous plants. The development of effective haploid protocols to produce homozygous plants has a significant impact on plant breeding, shorting the time and costs required to establish new cultivars. There are several available methods to obtain haploids and DHs-lines, of which anther or isolated microspore culture in vitro are the most effective. Microspore embryogenesis is more commonly applied. This is in part because more male gametophytes are contained in a single anther compared to the single female gametophyte per embryo sac. Microspore embryogenesis is regarded as one of the most striking examples of plant cell totipotency. The switch of cultured microspores from gametophytic to sporophytic mode of development has been induced by stress treatments of various kinds applied to donor plants, inflorescences, buds, anthers or isolated microspores both in vivo and in  vitro. Physical or chemical pretreatments (cold and heat shock, sugar starvation, colchicine, n-butanol, gametocydes) act as a trigger for inducing the sporophytic pathway, preventing the gametophytic pathway development of microspore. The recent investigations have revealed that cold pretreatment during microspore reprogramming acts rather as an anti-stress factor alleviating the real stress caused by nutrient starvation of anthers or microspores isolated from donor plants. Under stress pretreatment a vacuolated and polarized microspore transformed into a depolarized and dedifferentiated cell, which is an obligatory condition for reprogramming their development. We summarize data concerning the role of various stresses in the induction of microspore embryogenesis and possible mechanisms of their action at cellular and molecular levels. Identification of new stresses allows creating efficient protocols of doubled haploid production for end-user application in the breeding of many important crops.

About the Authors

T. I. Djatchouk
Agricultural Research Institute of South-East Region
Russian Federation
Saratov


O. V. Khomyakova
Agricultural Research Institute of South-East Region
Russian Federation
Saratov


V. N. Akinina
Agricultural Research Institute of South-East Region
Russian Federation
Saratov


I. A. Kibkalo
Agricultural Research Institute of South-East Region
Russian Federation
Saratov


A. V. Pominov
Agricultural Research Institute of South-East Region
Russian Federation
Saratov


References

1. Dyatchouk T.I., Khomyakova O.V., Dugina T.V. Cytology of sporophytic microspore development in triticale anther culture without cold pretreatment. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2010;5:61-65. (in Russian)

2. Ignatova S.A. Cell Technologies in Plant Industry, Genetics, and Breeding of Cultivated Plants: Tasks, Opportunities, and Development of in vitro Systems. Odessa: Astroprint Publ., 2011. (in Russian)

3. Shamrov I.I. (Ed.) / Kruglova N.N., Batygina T.B., Gorbunova V.Yu. Embryological Bases of Wheat Androclinesis. Moscow: Nauka Publ., 2005. (in Russian)

4. Kruglova N.N., Seldimirova O.A., Zinatullina A.E. Morphogenic microspore as an initial cell of androgenesis in vitro: Review of the problem. Nauchnyy Rezultat. Fizioligiya = Scientific Result. Physiology. 2017;3(1):3-7. DOI 10.18413/2409-0298-2017-3-1-3-7. (in Russian)

5. Shmykova N.A., Shumilina D.V., Suprunova T.P. Doubled haploid production in Brassica L. seeds. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2015;19(1): 111-120. DOI 10.18699/VJ15.014. (in Russian)

6. Aionesei T., Touraev A., Heberle-Bors E. Pathways to Microspore Embryogenesis. In: Palmer C.E., Keller W.A., Kasha K. (Eds.). Haploids in Crop Improvement II (Ser. Biotechnology in Agricultural and Forestry). Berlin; Heidelberg: Springer-Verlag, 2005;56:11-34.

7. Arzany A., Darvey N.L. The effect of colchicine on triticale antherderived plants: microspore pretreatment and haploid plant treatment using a hydroponic recovery system. Euphytica. 2001;122:235-241.

8. Babbar S.B., Kumari N., Mishra J.K. In vitro Androgenesis: Events Preceding its Cytological Manifestation. In: Shrivastava P.S., Narula A., Shrivastava Sh. (Eds.). Plant Biotechnology and Molecular Markers. New Dehli, India: Anamya Publishers, 2004;1-17.

9. Barceló P., Cabrera A., Hagel C., Lörz H. Production of doubled haploid plants from tritordeum anther culture. Theor. Appl. Genet. 1994; 87:741-745.

10. Barnabás B., Pfhahler P.L., Kovács G. Direct effect of colchicine on microspore embryogenesis to produce dihaploid plants in wheat (Triticum aestivum L.). Theor. Appl. Genet. 1991;81:675-678.

11. Batygina T.B. Stem cells and morphogenetic developmental programs in plants. Stem Cell. Res. J. 2011;3(1-2):45-120.

12. Belogradova K., Lewicka I., Heberle-Bors E., Touraev A. An Overview on Tobacco Doubled Haploids. In: Touraev А., Forster B.P., Jain S.M. (Eds.). Advances in Haploid Production in Higher Plants. Springer Science + Buisness Media, 2009;75-85.

13. Bonet F.J., Azhaid L., Olmedilla A. Pollen embryogenesis: atavism or totipotency? Protoplasma. 1998;202:115-121.

14. Broughton S. The application of n-butanol improves embryo and green plant production in anther culture of Australian wheat (Triticum aestivum L.) genotypes. Crop Pasture Sci. 2011;62:813-822.

15. Castillo A.M., Nielsen N.H., Jensen A., Vallés M.P. Effect of n-butanol on barley microspore embryogenesis. Plant Cell Tissue Organ Cult. 2014;117:411-418.

16. Chiancone B., Germana M.A. Microspore Embryogenesis through Anther Culture in Citrus clementina Hort. ex Tan. In: Germana M.A., Lambardi M. (Eds.). In Vitro Embryogenesis in Higher Plants (Methods in Molecular Biology). Springer Science + Business Media New York, 2016;1359:475-487.

17. Cistué L., Kasha K.J. Gametic Embryogenesis in Triticum: a Study of Some Critical Factors in Haploid (Microspore) Embryogenesis. In: Mujib A., Samaj J. (Eds.). Somatic Embryogenesis. Published online: 6 October 2005. Berlin; Heidelberg: Springer Verlag, 2005;321342. DOI 10.1007/7089-031.

18. Clement C., Sangwan R.S., Sangwan-Norell B. Microspore Embryo Induction and Development in Higher Plants: Cytological and Ultrastructural Aspects. In: Palmer C.E., Keller W.A., Kasha K. (Eds.). Haploids in Crop Improvement II (Ser. Biotechnology in Agricultural and Forestry). Berlin; Heidelberg: Springer-Verlag, 2005;51-72.

19. Corbesier L., Lejeune P., Bernier G. The role of carbohydrate in the induction of flowering in Arabidopsis thaliana: comparison between wild type and starch-less mutant. Planta. 1998;206:131-137.

20. Cordewener J., Busink R., Traas J.A., Custers J.B.M., van Campagne M.M. Induction of microspore embryogenesis in Brassica napus L. is accompanied by specific changes in protein synthesis. Planta. 1994;195:50-56.

21. Custers J.B.M., Cordewener J.H.G., Nolen Y., Dons H.J.M., van Campagne M.M. Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus. Plant Cell Rep. 1994;13:267-271.

22. de Buyser J., Henry Y. Wheat Production of Haploids, Performance of Doubled Haploids and Yield Trials. In: Bajaj Y.P.S. (Ed.). Biotechnology in Agriculture and Forestry. Vol. 2. Crops I. New York; Heidelberg: Springer Verlag, 1986;73-78.

23. Devaux P., Pickering R. Haploids in the improvement of Poaceae. In: Palmer C.E., Keller W.A., Kasha K. (Eds.). Haploids in Crop Improvement II (Ser. Biotechnology in Agricultural and Forestry). Berlin; Heidelberg: Springer-Verlag, 2005;56:215-242.

24. Dubas E., Wedzony M., Petrovska B., Salaj J., Zur I. Cell structural reorganization during induction of androgenesis in isolated microspore cultures of Triticale (×Triticosecale Wittm.). Acta Biologica Cracoviensia. Ser. Botanica. 2010;52:73-86.

25. Dunwell J.M. Haploids in flowering plants: origins and exploitation. Plant Biotech. J. 2010;8:377-424.

26. Eady C., Lindsey K., Twell D. The significance of microspore division and division symmetry of vegetative cell-specific transcription and generative cell differentiation. Plant Cell. 1995;7:65-74.

27. Fábián A., Földesiné Füredi P.K., Ambrus H., Jäger K., Szabó L., Barnabás B. Effect of n-butanol and cold pretreatment on the cytoskeleton and ultrastructure of maize microspores when cultured in vitro. Plant Cell Tissue Organ Cult. 2015;123:257-271.

28. Földesiné Füredi P.K., Ambrus H., Barnabás B. The effect of n-butanol and 2-aminoethanol on the in vitro androgenesis of maize. Acta Biol. Szeged. 2011;55:77-78.

29. Garrido D., Vicente O., Heberle-Borse E., Rodriquez-Garcia M. Cellular changes during the acquisition of embryogenic potential in isolated pollen grains of Nicotiana tabacum. Protoplasma. 1995;186: 220-230.

30. Germana M.A. Anther culture for haploid and doubled haploid production. Plant Cell Tissue Organ Cult. 2011;104:283-300.

31. Gu H.H., Hagberg P., Zhou W.J. Cold pretreatment enhances microspore embryogenesis in oilseed rape (Brassica napus L.). Plant Growth Reg. 2004;42:137-143.

32. Guha S.S., Maheshwari S.C. In vitro production of embryos from anthers of Datura. Nature. 1964;204:497-498.

33. Heberle-Bors E. Isolated pollen in tobacco: plant reproductive development in a nutshell. Sex Plant Reprod. 1989;2:1-10.

34. Heberle-Bors E., Reinert J. Environmental control and evidence for predetermination of pollen embryogenesis in Nicotiana tabacum L. Protoplasma. 1981;109:249-255.

35. Indrianto A., Barinova I., Touraev A., Heberle-Bors E. Tracking individual wheat microspores in vitro: identification of embryogenic microspores and body axis formation in embryo. Planta. 2001;212: 163-174.

36. Indrianto A., Heberle-Bors E., Touraev A. Assessment of various stresses and carbohydrates for their effect on the induction of embryogenesis in isolated wheat microspores. Plant Sci. 1999;143:17-23.

37. John P.C., Sek F.J., Carmichael J.P., McCurdy D.W. p34cdc2 homologue level, cell division, phytohormone responsiveness and cell differentiation in wheat leaves. J. Cell Sci. 1990;97:627-630.

38. Krogaard H., Andersen A.S. Free amino acids of Nicotiana alata anthers during development in vivo. Plant Physiol. 1983;57:527-531.

39. Krzewska M., Gołębiowska-Pikania G., Dubas E., Gawin M., Żur I. Identification of proteins related to microspore embryogenesis responsiveness in anther culture of winter triticale (×Triticosecale Wittm.). Euphytica. 2017;213:192. DOI 10.1007/s10681017-1978-1.

40. Maluszynski M.K., Kasha K.J., Szarejko I. Published Doubled Haploid Production in Plant Species. In: Maluszynski M.K., Kasha K.J., Forster B.P., Szarejko I. (Eds.). Doubled Haploid Production in Crop Plants. A Manual. Dordrecht: Springer, 2003;309-335.

41. Mohammadi P.P., Moieni A., Ebrahimi A., Javidfar F. Doubled haploid plants following treatment on microspore derived embryos of oilseed rape (Brassica napus L.). Plant Cell Tissue Organ Cult. 2012; 108:251-256. DOI 10.1007/s11240-011-0036-2.

42. Obert B., Barnabás B. Colchicine induced embryogenesis in maize. Plant Cell Tissue Organ Cult. 2004;77:283-285.

43. Ohnoutková L., Novotný J., Müllerova E., Vagera J., Kućera L. Is a cold pretreatment really needed for induction of in vitro androgenesis in barley and wheat? In: Bohanec B. (Ed.). Biotechnological Approaches for Utilization of Gametic Cells. Final Meeting. Bled, Slovenia, 1–5 July 2000. Luxembourg, 2000;33-37.

44. Oleszczuk S., Sowa S., Zimmy J. Androgenetic response to preculture stress in microspore cultures of barley. Protoplasma. 2006;228: 95-100.

45. Pauk J., Jancsó M., Simon-Kiss I. Rice doubled haploids and breeding. In: Touraev А., Forster B.P., Jain S.M. (Eds.). Advances in Haploid Production in Higher Plants. Springer Science + Business Media, 2009;189-197.

46. Pauls K.P., Chan J., Woronuk G., Schulze D., Brazolot J. When microspores decide to become embryos – cellular and molecular changes. Can. J. Bot. 2006;84:668-678.

47. Prasad T.K., Anderson M.D., Martin B.A., Steward R.C. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell. 1994;6:65-74.

48. Raghavan V. Role of the generative cell in androgenesis in henbane. Science. 1976;191:388-389.

49. Raina S.K., Irfan S.T. High frequency embryogenesis and plantlet regeneration from isolared microspore of indica rice. Plant Cell Rep. 1998;17:957-962.

50. Redha A., Talaat A. Improvement of green plant regeneration by manipulation of anther culture induction medium of hexaploid wheat. Plant Cell Tissue Organ Cult. 2008;92:141-146. DOI 10.1007/s11240-007-9315-3.

51. Reynold T.L. Pollen embryogenesis. Plant Mol. Biol. 1997;33:1-10. Saisington S., Schmid J.E., Stamp P., Bűter B. Colchicine-mediated chromosome doubling during anther culture of maize (Zea mays L.). Theor. Appl. Genet. 1996;92:1017-1023.

52. Scott R., Dagless E., Hodge R., Wyatt P., Soutlemi I., Draper J. Patterns of gene expression in developing anthers of Brassica napus. Plant Mol. Biol. 1991;17:195-207.

53. Segui-Simarro J.M. Androgenesis revisited. Bot. Rev. 2010;76:377404. DOI 10.1007/s12229-010-9056-6.

54. Shariatpanahi M.E., Bal U., Heberle-Bors E., Touraev A. Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol. Plant. 2006a;127:519-534.

55. Shariatpanahi M.E., Belogradova K., Hessamvaziri L., HeberleBors E., Touraev A. Efficient embryogenesis and regeneration in freshly isolated and cultured wheat (Triticum aestivum L.) microspores without stress pretreatment. Plant Cell Rep. 2006b;25:12941299. DOI 10.1007/s00299-006-0205-7.

56. Smykal P. Pollen embryogenesis: the stress mediated switch from gametophytic to sporophytic development, current status and future prospects. Biol. Plant. 2000;43:481-489.

57. Smykal P., Pechan P.M. Stress as assessed by the appearance of smHSPs transcripts, is required but not sufficient to initiate androgenesis. Physiol. Plant. 2000;110:135-143.

58. Soriano M., Cistue L., Castillo A.M. Enhanced induction of microspore embryogenesis after n-butanol treatment in wheat (Triticum aestivum L.) anther culture. Plant Cell Rep. 2008;27:805-811.

59. Soriano M., Li H., Boutilier K. Microspore embryogenesis establishment of embryo identity and pattern in culture. Plant Reprod. 2013; 26:181-196. DOI 10.1007/s00497-013-0226-7.

60. Sunderland N., Hu Z.H. Shed pollen culture in Hordeum vulgare. J. Exp. Bot. 1982;136:1086-1095.

61. Telmer C.A., Newcomb W., Simmonds D.H. Microspore development in Brassica napus and the effect of high temperature on division in vivo and in vitro. Protoplasma. 1993;172:154-165.

62. Tian Q.Q., Lu C.M., Li X., Fang X.W. Low temperature treatments of rice (Oryza sativa L.) anthers changes polysaccharide and protein composition of the anther walls and increases pollen fertility and callus induction. Plant Cell Tissue Organ Cult. 2015;120:89-98. DOI 10.1007/s11240-014-0582-5.

63. Touraev A., Indrianto A., Wratschko I., Vicente O., Heberle-Bors E. Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperatures. Sex Plant Rep. 1996b; 9:209-215.

64. Touraev A., Pfosser M., Vicente O., Heberle-Bors E. Stress a major signal controlling the developmental fate of tobacco microspores: towards a unified model of induction of microspore/pollen embryogenesis. Planta. 1996a;200:144-152.

65. Touraev A., Vicente O., Heberle-Bors E. Initiation of microspore embryogenesis by stress. Trends Plant Sci. 1999;2(8):297-302.

66. Varnier A.L., Jacquard C., Clement C. Programmed Cell Death and Microspore Embryogenesis. In: Touraev А., Forster B.P., Jain S.M. (Eds.). Advances in Haploid Production in Higher Plants. Springer Science + Business Media, 2009;147-153.

67. Wang M., Hoeekstra S., Bergen S., Lamers G.E.M., Oppedijk B.J., de Preister W., Schilperoori R.A. Apoptosis in developing anthers and role of ABA in this process during androgenesis in Hordeum vulgare L. Plant Mol. Biol. 1999;39:489-501.

68. Wang M., Van Bergen S., Van Duijn B. Insights into a key developmental switch and its importance for efficient plant breeding. Plant Physiol. 2000;124:523-530.

69. Wędzony M. Protocol for Anther Culture in Hexaploid Triticale (×Triticosecale Wittm.). In: Maluszynski M.K., Kasha K.J., Forster B.P., Szarejko I. (Eds.). Doubled Haploid Production in Crop Plants. A Manual. Dordrecht: Springer, 2003;123-128.

70. Wędzony M., Forster B.P., Żur I., Golemiec E., Szechyńska-Hebda M., Dubas E., Gotębiowska G. Progress in Doubled Haploid Technology in Higher Plants. In: Touraev А., Forster B.P., Jain S.M. (Eds.). Advances in Haploid Production in Higher Plants. Springer Science + Business Media, 2009;1-33.

71. Weingartner M., Binarova P., Drykova D., Schweighofer A., David A., Heberle-Bors E., Dooman J. Dynamic recruitment of cdc2 to specific microtubule structures during mitosis. Plant Cell. 2001;13: 1929-1943.

72. Weyen J. Barley and Wheat Doubled Haploids in Breeding. In: Touraev А., Forster B.P., Jain S.M. (Eds.). Advances in Haploid Production in Higher Plants. Springer Science + Business Media, 2009; 179-187.

73. Xie J.H., Gao M.W., Liang Z.O., Shu O.Y., Cheng X.Y. The effect of cool pretreatment on the isolated microspore culture and free amino acid change of anthers in Japonica rice (Orisa sativa L.). J. Plant Physiol. 1997;151:79-82. DOI 10.1016/S0176-1617(97)80040-5.

74. Xynias I.M., Zamani I.A., Goul-Vavidinoudi E. Effect of cold pretreatment and incubation temperature on bread wheat (Triticum aestivum L.) anther culture. Cereal Res. Commun. 2001;29(3):331338.

75. Zhao J.-P., Simmonds D.H., Newscomb W. Induction of embryogenesis with colchicines instead of heat in microspores of Brassica napus L. cv. Topas. Planta. 1996;198:433-439.

76. Zoriniants Sv., Tashpulatov A., Heberle-Bors E., Touraev A. The Role of Stress in the Induction of Haploid Microspore Embryogenesis. In: Palmer C.E., Keller W.A., Kasha K. (Eds.). Haploids in Crop Improvement II (Ser. Biotechnology in Agricultural and Forestry). Berlin; Heidelberg: Springer-Verlag, 2005;56:35-51.

77. Żur I., Dubas E., Golemiec E., Szechyńska-Hebda M., Janowiak F., Wędzony M. Stress-induced changes important for effective androgenic induction in isolated microspore culture of triticale (×Triticosecale Wittm.). Plant Cell Tissue Organ Cult. 2008;94:319-328. DOI 10.1007/s11240-008-9360-6.


Review

Views: 1032


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)