Реорганизация хроматина в процессе эритроидной дифференцировки
https://doi.org/10.18699/VJ19.467
Аннотация
Об авторах
А. А. ХабароваРоссия
Новосибирск
А. С. Рыжкова
Россия
Новосибирск
Н. Р. Баттулин
Россия
Новосибирск
Список литературы
1. Allahverdi A., Yang R., Korolev N., Fan Y., Davey C.A., Liu C., Nordenskiöld L. The effects of histone H4 tail acetylations on cationinduced chromatin folding and self-association. Nucleic Acids Res. 2011;39(5):1680-1691. DOI 10.1093/nar/gkq900.
2. Dixon J.R., Selvaraj S., Yue F. , Kim A., Li Y., Shen Y., Hu M., Liu J.S., Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376-380. DOI 10.1038/nature11082.
3. Dolznig H., Bartunek P., Nasmyth K., Müllner E.W., Beug H. Terminal differentiation of normal chicken erythroid progenitors: shortening of G1 correlates with loss of D-cyclin/cdk4 expression and altered cell size control. Cell Growth Differ. 1995;6(11):1341-1352.
4. Fishman V., Battulin N., Nuriddinov M., Maslova A., Zlotina А., Strunov A., Chervyakova D., Korablev A., Serov O., Krasilova A. 3D organization of chicken genome demonstrates evolutionary conservation of topologically associated domains and highlights unique architecture of erythrocytes’ chromatin. Nucleic Acids. Res. 2019; 47(2):648-665. Publ. online Nov. 2018. DOI 10.1093/nar/gky1103.
5. Fudenberg G., Imakaev M., Lu C., Goloborodko A., Abdennur N., Mirny L.A. Formation of chromosomal domains by loop extrusion. Cell Rep. 2016;15(9):2038-2049. DOI 10.1016/j.celrep.2016.04.085.
6. Gan H.H., Schlick T. Chromatin ionic atmosphere analyzed by a mesoscale electrostatic approach. Biophys. J. 2010;99:2587-2596. DOI 10.1016/j.bpj.2010.08.023.
7. Gibcus J.H., Samejima K., Goloborodko A., Samejima I., Naumova N., Nuebler J., Kanemaki M., Xie L., Paulson J.R., Earnshaw W.C., Mirny L.A., Dekker J. A pathway for mitotic chromosome formation. Science. 2018;359:eaao6135. DOI 10.1126/science.aao6135.
8. Imakaev M., Fudenberg G., McCord R.P., Naumova N., Goloborodko A., Lajoie B.R., Dekker J., Mirny L.A. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods. 2012;9(10):999-1003. DOI 10.1038/nmeth.2148.
9. Ji P., Yeh V., Ramirez T., Murata-Hori M., Lodish H.F. Histone deacetylase 2 is required for chromatin condensation and subsequent enucleation of cultured mouse fetal erythroblasts. Haematologica. 2010;95(12):2013-2021. DOI 10.3324/haematol.2010.029827.
10. Kantidze O.L., Iarovaia O.V., Philonenko E.S., Yakutenko I.I., Razin S.V. Unusual compartmentalization of CTCF and other transcription factors in the course of terminal erythroid differentiation. Biochim. Biophys. Acta. 2007;1773(6):924-933. DOI 10.1016/j.bbamcr.2007.03.015.
11. Korolev N., Allahverdi A., Lyubartsev A.P., Nordenskiöld L. The polyelectrolyte properties of chromatin. Soft Matter. 2012;36:1-12. DOI 10.1039/C2SM25662B.
12. Kschonsak M., Haering C.H. Shaping mitotic chromosomes: From classical concepts to molecular mechanisms. Bioessays. 2015;37: 755-766. DOI 10.1002/bies.201500020.
13. Li Z., Gadue P., Chen K., Jiao Y., Tuteja J., Schug J., Li W., Kaestner K.H. Foxa2 and H2A.Z mediate nucleosome depletion during embryonic stem cell differentiation. Cell. 2012;151(7):1608-1616. DOI 10.1016/j.cell.2012.11.018.
14. Lieberman-Aiden E., van BerkumN.L., Williams L., Imakaev M., Ragoczy T., Telling A., Amit I., Lajoie B.R., Sabo P.J., Dorschner M.O., Sandstrom R., Bernstein B., Bender M.A., Groudine M., Gnirke A., Stamatoyannopoulos J., Mirny L.A., Lander E.S., Dekker J. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289-293. DOI 10.1126/science.1181369.
15. Liu W., Tanasa B., Tyurina O.V., Zhou T.Y., Gassmann R., Liu W.T., Ohgi K.A., Benner C., Garcia-Bassets I., Aggarwal A.K., Desai A., Dorrestein P.C., Glass C.K., Rosenfeld M.G. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature. 2010;466(7305):508-512. DOI 10.1038/nature 09272.
16. Migliaccio A.R. Erythroblast enucleation. Haematologica. 2010;95(12): 1985-1988. DOI 10.3324/haematol.2010.033225. Mirny L. The fractal globule as a model of chromatin architecture in the cell. Chromosome Res. 2011;19(1):37-51. DOI 10.1007/s10577010-9177-0.
17. Moras М., Lefevre S.D., Ostuni М.А. From erythroblasts to mature red blood cells: Organelle clearance in mammals. Front. Physiol. 2017; 8:1076. DOI 10.3389/fphys.2017.01076.
18. Nowak R., Papoin J., Gokhin D.S., Casu C., Rivella S., Lipton J.M., Blanc L., Fowler V.M. Tropomodulin1 controls erythroblast enucleation via regulation of F-actin in the enucleosome. Blood. 2017; 130(9):1144-1155. DOI 10.1182/blood-2017-05-787051.
19. Nuebler J., Fudenberg G., Imakaev M., Abdennur N., Mirny L.A. Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc. Natl. Acad. Sci. USA. 2018;115(29):E6697E6706. DOI 10.1073/pnas.1717730115.
20. Oda H., Okamoto I., Murphy N., Chu J., Price S.M., Shen M.M., Torres-Padilla M.E., Heard E., Reinberg D. Monomethylation of histone H4–lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol. Cell Biol. 2009; 29(8):2278-2295. DOI 10.1128/MCB.01768-08.
21. Phengchat R., Takata H., Morii K., Inada N., Murakoshi H., Uchiyama H., Fukui K. Calcium ions function as a booster of chromosome condensation. Sci. Rep. 2016;6:38281. DOI 10.1038/srep38281.
22. Popova E.Y., Krauss S.W., Short S.A., Lee G., Villalobos J., Etzell J., Koury M.J., Ney P.A., Chasis J.A., Grigoryev S.A. Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architecture proteins but depends on histone deacetylation. Chromosome Res. 2009;17(1):47-64. DOI 10.1007/s10577008-9005-y.
23. Strick R., Strissel P.L., Gavrilov K., Levi-Setti R. Cation-chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes. J. Cell Biol. 2001;155(6): 899-910. DOI 10.1083/jcb.200105026.
24. Yoshida H., Kawane K., Koike M., Mori Y., Uchiyama M., Nagata S. Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature. 2005;437:754-758. DOI 10.1038/nature03964.
25. Zhao B., Mei Y., Schipma M.J., Roth E.W., Bleher R., Rappoport J.Z., Wickrema A., Yang J., Ji P. Nuclear condensation during mouse erythropoiesis requires caspase-3-mediated nuclear opening. Cell. 2016;36(5):498-510. DOI 10.1016/j.devcel.2016.02.001.