Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Reorganisation of chromatin during erythroid differentiation

https://doi.org/10.18699/VJ19.467

Abstract

A totipotent zygote has unlimited potential for differentiation into all cell types found in an adult organism. During ontogenesis proliferating and maturing cells gradually lose their differentiation potential, limiting the spectrum of possible developmental transitions to a specific cell type. Following the initiation of the developmental program cells acquire specific morphological and functional properties. Deciphering the mechanisms that coordinate shifts in gene expression revealed a critical role of three-dimensional chromatin structure in the regulation of gene activity during lineage commitment. Several levels of DNA packaging have been recently identified using chromosome conformation capture based techniques such a Hi-C. It is now clear that chromatin regions with high transcriptional activity assemble into Mb-scale compartments in the nuclear space, distinct from transcriptionally silent regions. More locally chromatin is organized into topological domains, serving as functionally insulated units with cell type – specific regulatory loop interactions. However, molecular mechanisms establishing and maintaining such 3D organization are yet to be investigated. Recent focus on studying chromatin reorganization accompanying cell cycle progression and cellular differentiation partially explained some aspects of 3D genome folding. Throughout erythropoiesis cells undergo a dramatic reorganization of the chromatin landscape leading to global nuclear condensation and transcriptional silencing, followed by nuclear extrusion at the final stage of mammalian erythropoiesis. Drastic changes of genome architecture and function accompanying erythroid differentiation seem to be an informative model for studying the ways of how genome organization and dynamic gene activity are connected. Here we summarize current views on the role of global rearrangement of 3D chromatin structure in erythroid differentiation.

About the Authors

A. A. Khabarova
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


A. S. Ryzhkova
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


N. R. Battulin
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


References

1. Allahverdi A., Yang R., Korolev N., Fan Y., Davey C.A., Liu C., Nordenskiöld L. The effects of histone H4 tail acetylations on cationinduced chromatin folding and self-association. Nucleic Acids Res. 2011;39(5):1680-1691. DOI 10.1093/nar/gkq900.

2. Dixon J.R., Selvaraj S., Yue F. , Kim A., Li Y., Shen Y., Hu M., Liu J.S., Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376-380. DOI 10.1038/nature11082.

3. Dolznig H., Bartunek P., Nasmyth K., Müllner E.W., Beug H. Terminal differentiation of normal chicken erythroid progenitors: shortening of G1 correlates with loss of D-cyclin/cdk4 expression and altered cell size control. Cell Growth Differ. 1995;6(11):1341-1352.

4. Fishman V., Battulin N., Nuriddinov M., Maslova A., Zlotina А., Strunov A., Chervyakova D., Korablev A., Serov O., Krasilova A. 3D organization of chicken genome demonstrates evolutionary conservation of topologically associated domains and highlights unique architecture of erythrocytes’ chromatin. Nucleic Acids. Res. 2019; 47(2):648-665. Publ. online Nov. 2018. DOI 10.1093/nar/gky1103.

5. Fudenberg G., Imakaev M., Lu C., Goloborodko A., Abdennur N., Mirny L.A. Formation of chromosomal domains by loop extrusion. Cell Rep. 2016;15(9):2038-2049. DOI 10.1016/j.celrep.2016.04.085.

6. Gan H.H., Schlick T. Chromatin ionic atmosphere analyzed by a mesoscale electrostatic approach. Biophys. J. 2010;99:2587-2596. DOI 10.1016/j.bpj.2010.08.023.

7. Gibcus J.H., Samejima K., Goloborodko A., Samejima I., Naumova N., Nuebler J., Kanemaki M., Xie L., Paulson J.R., Earnshaw W.C., Mirny L.A., Dekker J. A pathway for mitotic chromosome formation. Science. 2018;359:eaao6135. DOI 10.1126/science.aao6135.

8. Imakaev M., Fudenberg G., McCord R.P., Naumova N., Goloborodko A., Lajoie B.R., Dekker J., Mirny L.A. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods. 2012;9(10):999-1003. DOI 10.1038/nmeth.2148.

9. Ji P., Yeh V., Ramirez T., Murata-Hori M., Lodish H.F. Histone deacetylase 2 is required for chromatin condensation and subsequent enucleation of cultured mouse fetal erythroblasts. Haematologica. 2010;95(12):2013-2021. DOI 10.3324/haematol.2010.029827.

10. Kantidze O.L., Iarovaia O.V., Philonenko E.S., Yakutenko I.I., Razin S.V. Unusual compartmentalization of CTCF and other transcription factors in the course of terminal erythroid differentiation. Biochim. Biophys. Acta. 2007;1773(6):924-933. DOI 10.1016/j.bbamcr.2007.03.015.

11. Korolev N., Allahverdi A., Lyubartsev A.P., Nordenskiöld L. The polyelectrolyte properties of chromatin. Soft Matter. 2012;36:1-12. DOI 10.1039/C2SM25662B.

12. Kschonsak M., Haering C.H. Shaping mitotic chromosomes: From classical concepts to molecular mechanisms. Bioessays. 2015;37: 755-766. DOI 10.1002/bies.201500020.

13. Li Z., Gadue P., Chen K., Jiao Y., Tuteja J., Schug J., Li W., Kaestner K.H. Foxa2 and H2A.Z mediate nucleosome depletion during embryonic stem cell differentiation. Cell. 2012;151(7):1608-1616. DOI 10.1016/j.cell.2012.11.018.

14. Lieberman-Aiden E., van BerkumN.L., Williams L., Imakaev M., Ragoczy T., Telling A., Amit I., Lajoie B.R., Sabo P.J., Dorschner M.O., Sandstrom R., Bernstein B., Bender M.A., Groudine M., Gnirke A., Stamatoyannopoulos J., Mirny L.A., Lander E.S., Dekker J. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289-293. DOI 10.1126/science.1181369.

15. Liu W., Tanasa B., Tyurina O.V., Zhou T.Y., Gassmann R., Liu W.T., Ohgi K.A., Benner C., Garcia-Bassets I., Aggarwal A.K., Desai A., Dorrestein P.C., Glass C.K., Rosenfeld M.G. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature. 2010;466(7305):508-512. DOI 10.1038/nature 09272.

16. Migliaccio A.R. Erythroblast enucleation. Haematologica. 2010;95(12): 1985-1988. DOI 10.3324/haematol.2010.033225. Mirny L. The fractal globule as a model of chromatin architecture in the cell. Chromosome Res. 2011;19(1):37-51. DOI 10.1007/s10577010-9177-0.

17. Moras М., Lefevre S.D., Ostuni М.А. From erythroblasts to mature red blood cells: Organelle clearance in mammals. Front. Physiol. 2017; 8:1076. DOI 10.3389/fphys.2017.01076.

18. Nowak R., Papoin J., Gokhin D.S., Casu C., Rivella S., Lipton J.M., Blanc L., Fowler V.M. Tropomodulin1 controls erythroblast enucleation via regulation of F-actin in the enucleosome. Blood. 2017; 130(9):1144-1155. DOI 10.1182/blood-2017-05-787051.

19. Nuebler J., Fudenberg G., Imakaev M., Abdennur N., Mirny L.A. Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc. Natl. Acad. Sci. USA. 2018;115(29):E6697E6706. DOI 10.1073/pnas.1717730115.

20. Oda H., Okamoto I., Murphy N., Chu J., Price S.M., Shen M.M., Torres-Padilla M.E., Heard E., Reinberg D. Monomethylation of histone H4–lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol. Cell Biol. 2009; 29(8):2278-2295. DOI 10.1128/MCB.01768-08.

21. Phengchat R., Takata H., Morii K., Inada N., Murakoshi H., Uchiyama H., Fukui K. Calcium ions function as a booster of chromosome condensation. Sci. Rep. 2016;6:38281. DOI 10.1038/srep38281.

22. Popova E.Y., Krauss S.W., Short S.A., Lee G., Villalobos J., Etzell J., Koury M.J., Ney P.A., Chasis J.A., Grigoryev S.A. Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architecture proteins but depends on histone deacetylation. Chromosome Res. 2009;17(1):47-64. DOI 10.1007/s10577008-9005-y.

23. Strick R., Strissel P.L., Gavrilov K., Levi-Setti R. Cation-chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes. J. Cell Biol. 2001;155(6): 899-910. DOI 10.1083/jcb.200105026.

24. Yoshida H., Kawane K., Koike M., Mori Y., Uchiyama M., Nagata S. Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature. 2005;437:754-758. DOI 10.1038/nature03964.

25. Zhao B., Mei Y., Schipma M.J., Roth E.W., Bleher R., Rappoport J.Z., Wickrema A., Yang J., Ji P. Nuclear condensation during mouse erythropoiesis requires caspase-3-mediated nuclear opening. Cell. 2016;36(5):498-510. DOI 10.1016/j.devcel.2016.02.001.


Review

Views: 784


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)