Preview

Vavilov Journal of Genetics and Breeding

Advanced search

A system approach to the modeling of fungal infections of the wheat leaf

https://doi.org/10.18699/VJ19.468

Abstract

Currently, studies on the mechanisms of the pathogenesis of plant diseases and their distribution in crops are intensively conducted in Russia and the world. First of all, this interest is associated with a significant effect of pathogens on the harvest. In Western Siberia, brown rust and powdery mildew are almost annually recorded in the crops of spring and winter wheat, reaching in some years up to the epiphytotic level. In this regard, methods for monitoring the condition of crops in order to predict their dynamics and plan agrotechnological events to control the state of plants in crops, including the development of fungal infection are developing. Models of fungal infections development on the wheat leaf (for example, brown rust) are used to monitor, predict and control the state of crops in order to optimize the growing process. Mathematical models allow computational experiments to make predictions about the risk dynamics of infections in different scenarios of global weather changes. Such designation of models assumes their hierarchical structure characteristic of multilevel modeling systems. This review presents models for the development of foliar fungal infections in crops, and formulates the methodological aspects of system modeling that can be used for adapting existing models and their units, and developing new models based on them. The article presents the structure of the hierarchical system for modeling the development of leafy infection, provides an overview of the units constituting the system, and discusses the issues of parametric adaptation of submodels. We demonstrated that, to date, plant growth and development models have been developed with varying degrees of detail. Currently, to develop a system for modeling the development of an infection in a crop, it is necessary to determine a large body of available experimental data and, by taking into account this data, we can put together a model as a system consisting of model modules, for which the models of basic processes have already been developed and described.

About the Authors

S. V. Nikolaev
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


U. S. Zubairova
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


E. S. Skolotneva
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


E. A. Orlova
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


D. A. Afonnikov
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


References

1. Зубаирова У.С., Пененко А.В., Николаев С.В. Моделирование роста и развития растительных тканей в формализме L-систем. Вавиловский журнал генетики и селекции. 2012;16(4/1): 816-824. [Zubairoba U.S., Penenko A.V., Nikolaev S.V. Modeling of plant tissue growth and development with L-systems. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2012;16(4/1):816-824. (in Russian)]

2. Санин С.С. Контроль болезней сельскохозяйственных растений – важнейший фактор интенсификации растениеводства. Вестник защиты растений. 2010;1:3-14. [Sanin S.S. Crop pathogen control is an important factor of plant cultivation. Vestnik Zaschity Rasteniy = Herald of Plant Protection. 2010;1:3-14 (in Russian)]

3. Сколотнева Е.С., Леонова И.Н., Букатич Е.Ю., Салина Е.А. Методические подходы к идентификации эффективных генов, определяющих устойчивость пшеницы к комплексу грибных заболеваний. Вавиловский журнал генетики и селекции. 2017;21(7): 862-869. DOI 10.18699/VJ17.307. [Skolotneva E.S., Leonova I.N., Bukatich E.Yu., Salina E.A. Methodical approaches to identification of effective wheat genes providing broad-spectrum resistance against fungal diseases. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(7):862-869. DOI 10.18699/VJ17.307. (in Russian)]

4. Торнли Д.Г.М. Математические модели в физиологии растений. Киев: Наук. думка, 1982. [Thornley J.H.M. Mathematical Models in Plant Physiology. London: Academic Press, 1976. (Russ. ed.: Tornli D.G.M. Mathematical Models in Plant Physiology. Kiev: Naukova Dumka Publ., 1982. (in Russian)]

5. Arrow K.J., Hurwicz L., Uzawa H. Constraint qualifications in maximization problems. Naval Res. Log. Quarterly. 1961;8(2):175-191. DOI 10.1002/nav.3800080206.

6. Audsley E., Milne A., Paveley N. A foliar disease model for use in wheat disease management decision support systems. Ann. Appl. Biol. 2005;147(2):161-172. DOI 10.1111/j.1744-7348.2005.00023.x.

7. Bailey B.N., Stoll R., Pardyjak E.R., Mahaffee W.F. Effect of vegetative canopy architecture on vertical transport of massless particles. Atmos. Environ. 2014;95:480-489. DOI 10.1016/j.atmosenv.2014.06.058.

8. Balmant W., Sugai-Guérios M.H., Coradin J.H., Krieger N., Furigo Junior A., Mitchell D.A. A model for growth of a single fungal hypha based on well-mixed tanks in series: simulation of nutrient and vesicle transport in aerial reproductive hyphae. PloS One. 2015;10(3): e0120307. DOI 10.1371/journal.pone.0120307.

9. Bancal M.O., Robert C., Ney B. Modelling wheat growth and yield losses from late epidemics of foliar diseases using loss of green leaf area per layer and pre-anthesis reserves. Ann. Bot. 2007;100(4):777789. DOI 10.1093/aob/mcm163.

10. Bannari A., Morin D., Bonn F., Huete A.R. A review of vegetation indices. Remote Sens. Rev. 1995;13(1-2):95-120. DOI 10.1080/02757259509532298.

11. Bolton M.D., Kolmer J.A., Garvin D.F. Wheat leaf rust caused by Puccinia triticina. Mol. Plant Pathol. 2008;9(5):563-575. DOI 10.1111/J.1364-3703.2008.00487.X.

12. Boudon F., Pradal P., Cokelaer T., Prusinkiewicz P., Godin C. L-py: an L-system simulation framework for modeling plant architecture development based on a dynamic language. Front. Plant Sci. 2012; 3(76). DOI 10.3389/fpls.2012.00076.

13. Bravo C., Moshou D., West J., McCartney A., Ramon H. Early disease detection in wheat fields using spectral reflectance. Biosyst. Eng. 2003;84(2):137-145. DOI 10.1016/S1537-5110(02)00269-6.

14. Brisson N., Gary C., Justes E., Roche R., Mary B., Ripoche D., Zimmer D., Sierra J., Bertuzzi P., Burger P., Bussière F. An overview of the crop model STICS. Eur. J. Agron. 2003;18(3-4):309-332. DOI 10.1016/S1161-0301(02)00110-7.

15. Cabrera-Bosquet L., Molero G., Stellacci A., Bort J., Nogues S., ArausJ. NDVI as a potential tool for predicting biomass, plant nitrogen content and growth in wheat genotypes subjected to different water and nitrogen conditions. Cereal Res. Commun. 2011;39(1):147-159. DOI 10.1556/CRC.39.2011.1.15.

16. Campbell G.S., Norman J.M. An Introduction to Environmental Biophysics. New York: Springer-Verlag, 1998.

17. Caubel J., Launay M., Lannou C., Brisson N. Generic response functions to simulate climate-based processes in models for the development of airborne fungal crop pathogens. Ecol. Model. 2012; 242:92104. DOI 10.1016/j.ecolmodel.2012.05.012.

18. Caubel J., Launay M., Ripoche D., Gouache D., Buis S., Huard F., Huber L., Brun F., Bancal M.O. Climate change effects on leaf rust of wheat: Implementing a coupled crop-disease model in a French regional application. Eur. J. Agron. 2017;90:53-66. DOI 10.1016/j.eja.2017.07.004.

19. Chamecki M. An analytical model for dispersion of biological particles emitted from area sources: Inclusion of dispersion in the crosswind direction. Agric. For. Meteorol. 2012;157:30-38. DOI 10.1016/j.agrformet.2012.01.010.

20. Chamecki M., Dufault N.S., Isard S.A. Atmospheric dispersion of wheat rust spores: a new theoretical framework to interpret field data and estimate downwind dispersion. J. Appl. Meteor. Climatol. 2012; 51(3):672-685. DOI 10.1175/JAMC-D-11-0172.1.

21. Chelle M., Andrieu B. Radiative models for architectural modeling. Agronomie. 1999;19(3-4):225-240. https://hal.archives-ouvertes.fr/hal-00885926/document.

22. Constantin J., Beaudoin N., Launay M., Duval J., Mary B. Long-term nitrogen dynamics in various catch crop scenarios: test and simulations with STICS model in a temperate climate. Agric. Ecosyst. Environ. 2012;147:36-46. DOI 10.1016/j.agee.2011.06.006.

23. Cowger C., Wallace L.D., Mundt C.C. Velocity of spread of wheat stripe rust epidemics. Phytopathology. 2005;95(9):972-982. DOI 10.1094/PHYTO-95-0972.

24. De Wolf E.D., Isard S.A. Disease cycle approach to plant disease prediction. Annu. Rev. Phytopathol. 2007;45(1):203-220. DOI 10.1146/annurev.phyto.44.070505.143329.

25. Donatelli M., Magarey R.D., Bregaglio S., Willocquet L., Whish J.P., Savary S. Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 2017;155:213-224. DOI 10.1016/j.agsy.2017.01.019.

26. Duthie J.A. Models of the response of foliar parasites to the combined effects of temperature and duration of wetness. Phytopathology. 1997;87(11):1088-1095. DOI 10.1094/PHYTO.1997.87.11.1088.

27. El Jarroudi M., Kouadio L., Giraud F., Delfosse P., Tychon B. Brown rust disease control in winter wheat: II. Exploring the optimization of fungicide sprays through a decision support system. Environ. Sci. Pollut. Res. 2014;21(7):4809-4818. DOI 10.1007/s11356-014-2557-9.

28. Forrester J.W. Principles of Systems. Cambridge, Massachusetts, USA: Wright-Allen Press Inc., 1968. Fournier C., Andrieu B. A 3D architectural and process-based model of maize development. Ann. Bot. 1998;81(2):233-250. DOI 10.1006/anbo.1997.0549.

29. Gates D.M. Biophysical Ecology. New York: Springer-Verlag, 1980. Jing Q., Jégo G., Bélanger G., Chantigny M.H., Rochette P. Simulation of water and nitrogen balances in a perennial forage system using the STICS model. Field Crops Res. 2017;201:10-18. DOI 10.1016/j.fcr.2016.10.017.

30. Junk J., Kouadio L., Delfosse P., El Jarroudi M. Effects of regional climate change on brown rust disease in winter wheat. Clim. Change. 2016;135(3-4):439-451. DOI 10.1007/s10584-015-1587-8.

31. Kolmer J. Leaf rust of wheat: pathogen biology, variation and host resistance. Forests. 2013;4(1):70-84. DOI 10.3390/f4010070.

32. Krause R.A., Massie L.B. Predictive systems: modern approaches to disease control. Annu. Rev. Phytopathol. 1975;13(1):31-47. DOI 10.1146/annurev.py.13.090175.000335.

33. Lammoglia S.K., Makowski D., Moeys J., Justes E., Barriuso E., Mamy L. Sensitivity analysis of the STICS-MACRO model to identify cropping practices reducing pesticides losses. Sci. Total Environ. 2017a;580:117-129. DOI 10.1016/j.scitotenv.2016.10.010.

34. Lammoglia S.K., Moeys J., Barriuso E., Larsbo M., Marín-Benito J.M., Justes E., Alletto L., Ubertosi M., Nicolardot B., MunierJolain N., Mamy L. Sequential use of the STICS crop model and of the MACRO pesticide fate model to simulate pesticides leaching in cropping systems. Environ. Sci. Pollution Res. 2017b;24(8):68956909. DOI 10.1007/s11356-016-6842-7.

35. Landsberg J., Sands P. Physiological Ecology of Forest Production. V. 4: Principles, Processes and Models. Cambridge, Massachusetts, USA: Academic Press, 2010.

36. Leffelaar P.A., Ferrari T.J. Some elements of dynamic simulation. Simulation and Systems Management in Crop Protection. Wageningen: Pudoc, 1989;19-45.

37. Lew R.R. How does a hypha grow? The biophysics of pressurized growth in fungi. Nat. Rev. Microbiol. 2011;9(7):509. DOI 10.1038/nrmicro2591.

38. MacLean H., Dochain D., Waters G., Dixon M., Chaerle L., Van Der Straeten D. Identification of simple mass balance models for plant growth-Towards food production on manned space missions. Proc. CAB11. 2010;43(6):335-340. DOI 10.3182/20100707-3-BE2012.0028.

39. Madden L.V. Botanical epidemiology: some key advances and its continuing role in disease management. Eur. J. Plant Pathol. 2006;115: 3-23. DOI 10.1007/s10658-005-1229-5.

40. Magarey R.D., Sutton T.B., Thayer C.L. A simple generic infection model for foliar fungal plant pathogens. Phytopathology. 2005; 95(1):92-100. DOI 10.1094/PHYTO-95-0092.

41. Mahlein A.K., Rumpf T., Welke P., Dehne H.W., Plumer L., Steiner U., Oerke E.C. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 2013;128:21-30. DOI 10.1016/j.rse.2012.09.019.

42. McCartney H.A., Fitt B.D.L., West J.S. Dispersal of foliar plant pathogens: mechanisms, gradients and spatial patterns. The Epidemiology of Plant Diseases. Amsterdam: Springer, 2006;159-192. https://link.springer.com/content/pdf/10.1007/1-4020-4581-6_6.pdf.

43. Miller N.E., Stoll R., Mahaffee W.F., Pardyjak E.R. Mean and turbulent flow statistics in a trellised agricultural canopy. Boundary-Layer Meteor. 2017;165(1):113-143. DOI 10.1007/s10546-017-0265-y.

44. Mundt C.C., Sackett K.E., Wallace L.D. Landscape heterogeneity and disease spread: experimental approaches with a plant pathogen. Ecol. Appl. 2011;21(2):321-328. DOI 10.1890/10-1004.1.

45. Pan Z., Li X., Yang X.B., Andrade D., Xue L., McKinney N. Prediction of plant diseases through modelling and monitoring airborne pathogen dispersal. Plant Sciences Reviews. 2010. CABI, 191. 2010. DOI 10.1079/PAVSNNR20105018.

46. Pradal C., Dufour-Kowalski S., Boudon F., Fournier C., Godin C. OpenAlea: a visual programming and component-based software platform for plant modelling. Funct. Plant Biol. 2008;35(10):751760. DOI 10.1071/FP08084.

47. Robert C., Bancal M.O., Ney B., Lannou C. Wheat leaf photosynthesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status. New Phytol. 2005;165(1):227-241. DOI 10.1111/j.1469-8137.2004.01237.x.

48. Robert C., Fournier C., Andrieu B., Ney B. Coupling a 3D virtual wheat (Triticum aestivum) plant model with a Septoria tritici epidemic model (Septo3D): a new approach to investigate plant – pathogen interactions linked to canopy architecture. Funct. Plant Biol. 2008;35(10):997-1013. DOI 10.1071/FP08066.

49. Rossi V., Racca P., Giosue S., Pancaldi D., Alberti I. A simulation model for the development of brown rust epidemics in winter wheat. Eur. J. Plant Pathol. 1997;103(5):453-465. DOI 10.1023/A:1008677407661.

50. Savary S., Nelson A.D., Djurle A., Esker P.D., Sparks A., Amorim L., Filho A.B., Caffi T., Castilla N., Garrett K., McRoberts N., Rossi V., Yuen J., Willocquet L. Concepts, approaches, and avenues for modelling crop health and crop losses. Eur. J. Agron. 2018. DOI 10.1016/j.eja.2018.04.003.

51. Savary S., Stetkiewicz S., Brun F., Willocquet L. Modelling and mapping potential epidemics of wheat diseases – examples on leaf rust and Septoria tritici blotch using EPIWHEAT. Eur. J. Plant Pathol. 2015;142(4):771-790. DOI 10.1007/s10658-015-0650-7.

52. Setten L.M., Lendoiro N., Favret E.A. Wheat leaf rust fungus: RIMAPS analysis to detect germ-tube orientation pattern. Microsc. Microanal. 2015;21(S3):227-228. DOI 10.1017/S1431927615001932.

53. Simulation of Ecophysiological Processes of Growth in Several Annual Crops. Ed. by F.W.T. Penning de Vries, D.M. Jansen, H.F.M. ten Berge, A. Bakema. V. 29. Wageningen: Pudoc, 1989.

54. Sugai-Guérios M.H., Balmant W., Krieger N., Junior A.F., Mitchell D.A. Colonization of solid particles by Rhizopus oligosporus and Aspergillus oryzae in solid-state fermentation involves two types of penetrative hyphae: A model-based study on how these hyphae grow. Biochem. Eng. J. 2016;114:173-182. DOI 10.1016/j.bej.2016.07.005.

55. Tribouillois H., Constantin J., Justes E. Analysis and modeling of cover crop emergence: Accuracy of a static model and the dynamic STICS soil-crop model. Eur. J. Agron. 2018;93:73-81. DOI 10.1016/j.eja.2017.12.004.

56. Verdier N. Hierarchy: A short history of a word in western thought. Ed. D. Pumain. Hierarchy in Natural and Social Sciences. Dordrecht: Springer, 2006;13-37.

57. Wallach D., Makowski D., Jones J.W., Brun F. Working with Dynamic Crop Models: Methods, Tools and Examples for Agriculture and Environment. London: Academic Press, 2014. Watson D.J. Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties and within and between years. Ann. Bot. 1947;11: 41-76.

58. Yin X., Struik P.C. Crop systems biology: where are we and where to go? Crop Systems Biology: Narrowing the Gaps between Crop Modelling and Genetics. Springer Int. Publ., 2016. DOI 10.1007/978-3319-20562-5_10.

59. Zadoks J.C., Chang T.T., Konzak C.F. A Decimal code for the growth stage of cereals. Weed Res. 1974;14(6):415-421. DOI 10.1111/j.1365-3180.1974.tb01084.x.

60. Zhu X., Song Q., Ort D.R. Elements of a dynamic systems model of canopy photosynthesis. Curr. Opin. Plant Biol. 2012;15(3):237-244. DOI 10.1016/j.pbi.2012.01.010.

61. Zhu X., Zhang G., Tholen D., Wang Y., Xin C., Song Q. the next generation models for crops and agro-ecosystems. Sci. China Inf. Sci. 2011;54(3):589-597. DOI 10.1007/s11432-011-4197-8.


Review

Views: 965


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)