Preview

Vavilov Journal of Genetics and Breeding

Advanced search

GENE EXPRESSION AND mRNA SECONDARY STRUCTURES IN DIFFERENT Mycoplasma SPECIES

Abstract

Evaluation of gene expression efficiency in different organisms is a vital task of modern biology. Microorganisms that feed on humans and pets are particularly interesting. In this work, bioinformatical analysis of 62 Mycoplasma strains is performed. It has been shown that translation efficiency in these organisms depends on the number of potential secondary structures in genes and does not depend on codon compositions. Several species with low concentrations of local inverted repeats in genes have been found. Phylogenetic analysis shows that this feature may be associated with their environment. High concentrations of local inverted repeats, not typical of other Mycoplasma species, have been found in the translation start regions of M. haemofelis genes.

About the Authors

V. S. Sokolov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


V. A. Likhoshvai
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research State University, Novosibirsk, Russia
Russian Federation


Yu. G. Matushkun
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research State University, Novosibirsk, Russia
Russian Federation


References

1. Лихошвай В.А., Матушкин Ю.Г. Предсказание эффективности экспрессии генов по их нуклеотидному составу // Молекуляр. биология. 2000. Т. 34. № 3. С. 406–412.

2. Andersson S.G.E., Kurland C.G. Codon preferences in freeliving microorganisms // Microbiol. Rev. 1990. V. 54. Р. 198–210.

3. Bennetzen J.L., Hall B.D. Codon selection in Yeast // J. Biol. Chem. 1982. V. 257. Р. 3026–3031.

4. Dam E.B., Pleij C.W., Bosch L. RNA pseudoknots: translational frameshifting and readthrough on viral RNAs // Virus Genes. 1990. V. 4. Р. 121–136.

5. Collier A.M., Clyde W.A. Jr. Relationships between Mycoplasma pneumoniae and human respiratory epithelium // Infect. Immun. 1971. V. 3. No. 5. P. 694–701.

6. Gouy M., Gautier C. Codon usage in bacteria: correlation with gene expressivity // Nucl. Acids Res. 1982. V. 10. Р. 7055–7070.

7. Grantham R., Gautier C., Gouy M. et al. Codon catalog usage and the genome hypothesis // Nucl. Acids Res. 1980. V. 8. r49–r62.

8. Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms // Mol. Biol. Evol. 1985. V. 2. Р. 13–34.

9. Jacks T., Madhani H.D., Masiarz F.R., Varmus H.E. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region // Cell. 1988. V. 55. Р. 447–458.

10. Li H., Luo L. The relation between codon usage, base correlation and gene expression level in Escherichia coli and Yeast // J. Theor. Biol. 1996. V. 181. Iss. 2. P. 111–124.

11. Likhoshvai V.A., Matushkin Yu.G. Differentiation of single-cell organisms according to elongation stages crucial for gene expression efficacy // FEBS Lett. 2002. V. 516. P. 87–92.

12. Lopinski J.D., Dinman J.D., Bruenn J.A. Kinetics of ribosomal pausing during programmed –1 translational frameshifting // Mol. Cell. Biol. 2000. V. 20. Р. 1095–1103.

13. Matushkin Yu.G., Likhoshvai V.A., Kochetov A.V. Local secondary structure may be a critical characteristic influencing translation of unicellular organisms mRNA // Bioinformatics of Genome Regulation and Structure. Boston a.o.: Kluwer Acad. Publ., 2004. Р. 103–114.

14. Peters I.R., Helps C.R., McAuliffe L. et al. RNase P RNA gene (rnpB) phylogeny of Hemoplasmas and other Mycoplasma species // J. Clin. Microbiol. 2008. V. 46. No. 5. Р. 1873–1877.

15. Powell D.A., Hu P.C., Wilson M. et al. Attachment of Mycoplasma pneumoniae to respiratory epithelium // Infect. Immun. 1976. V. 13 No. 3. P. 959–966.

16. Sharp P.M., Li W.H. The codon adaptation index – a measure of directional synonymous codon usage bias, and its potential applications // Nucl. Acids Res. 1987. V. 15. Р. 1281–1295.

17. Sorensen M.A., Kurland C.G., Pedersen S. Codon usage determines translation rate in Escherichia coli // J. Mol. Biol. 1989. V. 207. Р. 365–377.

18. Stenico M., Lloyd A.T., Sharp P.M. Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational biases // Nucl. Acids Res. 1994. V. 22. Р. 2437–2446.

19. Takyar S., Hickerson R.P., Noller H.F. mRNA helicase activity of the ribosome // Cell. 2005. V. 120. Р. 49–58.

20. Thanaraj T.A., Argos P. Ribosome-mediated translational pause and protein domain organization // Protein Sci. 1996. V. 5. Р. 1594–1612.

21. Varenne S., Buc J., Lloubes R., Lazdunski C. Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains // J. Mol. Biol. 1984. V. 180. Р. 549–576.

22. Vladimirov N.V., Likhoshvai V.A., Matushkin Yu.G. Correlation of codon biases and potential secondary structures with mRNA translation efficiency in unicellular organisms // Mol. Biol. 2007. V. 41. No. 5. Р. 926–933.

23. Wada K.S., Aota R., Tsuchiya F. et al. Codon usage tabulated from GenBank genetic sequence data // Nucl. Acids Res. 1990. V. 18. (Suppl.). Р. 2367–2411.

24. Waites K.B., Balish M.F., Atkinson T.P. New insights into the pathogenesis and detection of Mycoplasma pneumoniae infections // Future Microbiol. 2008. V. 3. No. 6. Р. 635–648.


Review

Views: 452


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)