Preview

Vavilov Journal of Genetics and Breeding

Advanced search

COMPUTER ANALYSIS OF THE STRUCTURES OF LIPASES FROM Geobacillus BACTERIA AND IDENTIFICATION OF MOTIFS DETERMINING THEIR THERMOSTABILITY

Abstract

Properties of thermostable lipases from Geobacillus bacteria are considered. The enzymes are divided into groups with regard to their thermostability. Coordinated amino acid substitutions are demonstrated in the highly thermostable group (half-inactivation time > 1000 min); V198A, Q203E, V204I, Q217E; and V294I, P306A, T307A, D312S, R313H, E316G, V324I, S334N, A343T. The hydrophilic moment of α helices, correlating with the charge and polarity of amino acid in the region, exerts the most significant influence on enzyme thermostability. Most thermostable lipases are characterized by structural stabilization of the lid domain in the 198А-217Е region.

About the Authors

K. N. Sorokina
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


M. A. Nuriddinov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


A. S. Rozanov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


V. A. Ivanisenko
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


S. E. Peltek
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


References

1. Abdel-Fattah Y.R., Gaballa A.A. Identification and overexpression of a thermostable lipase from Geobacillus thermoleovorans Toshki in Escherichia coli // Microbiol. Res. 2008. V. 163. No. 1. P. 13–20.

2. Chakravorty D., Parameswaran S., Dubey V.K., Patra S. In silico characterization of thermostable lipases // Extremophiles. 2011. V. 15. P. 89–103.

3. Cho A.R., Yoo S.K., Kim E.J. Cloning, sequencing and expression in Escherichia coli of a thermophilic lipase from Bacillus thermoleovorans ID-1 // FEMS Microbiol. Lett. 2000. V. 186. No. 2. P. 235–238.

4. Choi W.C., Kim M.H., Ro H.S. et al. Zinc in lipase L1 from Geobacillus stearothermophilus L1 and structural implications on thermal stability // FEBS Lett. 2005. V. 579. No. 16. P. 3461–3466.

5. Ebrahimpour A., Rahman R.N.Z.R.A., Basri M., Salleh A.B. High level expression and characterization of a novel thermostable, organic solvent tolerant, 1,3-regioselective lipase from Geobacillus sp. strain ARM // Bioresource Technol. 2011. V. 102. No. 13. P. 6972–6981.

6. Guex N., Peitsch M.C. SWISS-MODEL and the Swiss-Pdb-Viewer: An environment for comparative protein modeling // Electrophoresis. 1997. V. 18. P. 2714–2723.

7. Hebin L., Xiaobo Z. Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1 // Protein Expres. Purif. 2005. V. 42. No. 1. P. 153–159.

8. Ivanisenko V.A., Eroshkin A.M., Kolchanov N.A. WebPro-Analyst: an interactive tool for analysis of quantitative structure-activity relationships in protein families // Nucl. Acids Res. 2005. V. 33. P. 99–104.

9. Jaeger K.E., Eggert T. Lipases for biotechnology // Curr. Opin. Biotechnol. 2002. V. 13. P. 390–397.

10. Karkhane А.А., Yakhchali B., Jazii F.R., Bambai B. The effect of substitution of Phe181 and Phe182 with Ala on activity, substrate specificity and stabilization of substrate at the active site of Bacillus thermocatenulatus lipase // J. Mol. Catalysis B: Enzymatic. 2009. V. 61. No. 3/4. P. 162–167.

11. Kim H.K., Park S.Y., Lee J.K., Oh.T.K. Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1 // Biosci., Biotechnol. Biochem. 1998. V. 62. No. 1. P. 66–71.

12. Quintana-Castro R., Dнaz P., Valerio-Alfaro G. et al. Gene cloning, expression, and characterization of the Geobacillus thermoleovorans CCR11 thermoalkaliphilic lipase // Mol. Biotechnol. 2009. V. 42. No. 1. P. 75–83.

13. Quyen D.T., Schmidt-Dannert C., Schmid R.D. High-level expression of a lipase from Bacillus thermocatenulatus BTL2 in Pichia pastoris and some properties of the recombinant lipase // Protein Expres. Purif. 2003. V. 28. No. 1. P. 102–110.

14. Ruslan R., Rahman R.N.Z.R.A., Leow T.C. et al. Improvement of thermal stability via outer-loop ion pair interaction of mutated T1 lipase from Geobacillus zalihae strain T1 // Intern. J. Mol. Sci. 2012. V. 13. No. 1. P. 943–960.

15. Sabri S., Rahman R.N.Z.R.A., Leow T.C. et al. Secretory expression and characterization of a highly Ca2+-activated thermostable L2 lipase // Protein Expres. Purif. 2009. V. 68. No. 2. P. 161–166.

16. Sharma P.K., Kumar R., Kumar R. et al. Engineering of a metagenome derived lipase toward thermal tolerance: Effect of asparagine to lysine mutation on the protein surface // Gene. 2012. V. 491. No. 2. P. 264–271.

17. Shih T.W., Pan T.M. Substitution of Asp189 residue alters the activity and thermostability of Geobacillus sp. NTU 03 lipase // Biotechnol. Lett. 2011. V. 33. Nо. 9. P. 1841–1846.

18. Baldessari A. Lipases as catalysts in synthesis of fine chemicals // Methods Mol. Biol. 2012. V. 861. P. 445–456.

19. Soliman N.A., Knoll M., Abdel-Fattah Y.R. et al. Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt // Process Biochem. 2007. V. 42. No. 7. P. 1090–1100.

20. Tayyab M., Rashid N., Akhtar M. Isolation and identification of lipase producing thermophilic Geobacillus sp. SBS-4S: Cloning and characterization of the lipase // J. Biosci. Bioengineer. 2011. V. 111. No. 3. P. 272–278.

21. Tyndall J.D.A., Sinchaikul S., Fothergill-Gilmore L.A., Taylor P. Crystal structure of a thermostable lipase from Bacillus stearothermophilus P1 // J. Mol. Biol. 2002. V. 323. No. 5. P. 859–869.

22. Wu L., Liu B., Hong Y. et al. Residue Tyr224 is critical for the thermostability of Geobacillus sp. RD-2 lipase // Biotechnol. Lett. 2010. V. 32. No. 1. P. 107–112.


Review

Views: 438


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)