Preview

Vavilov Journal of Genetics and Breeding

Advanced search

THE CURRENT STATE OF GENETIC AND METABOLIC ENGINEERING OF Geobacillus BACTERIA AIMED AT THE PRODUCTION OF ETHANOL AND ORGANIC ACIDS

Abstract

Thermophilic bacteria are extensively used in biotechnology. Species of the genus Geobacillus rank among the most promising ones. Current methods of the genetic and metabolic engineering of these microorganisms are considered. Examples of their use in various branches of biotechnology are presented.

About the Authors

A. S. Rozanov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


I. A. Meshcheryakova
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


S. V. Shekhovtsov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


S. E. Peltek
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


References

1. Abdel-Fattah Y.R., Gaballa A.A. Identification and overexpression of a thermostable lipase from Geobacillus thermoleovorans Toshki in Escherichia coli // Microbiol. Res. 2008. V. 163. P. 13–20.

2. Afzal M., Oommen S., Al-Awadi S. Transformation of chenodeoxycholic acid by thermophilic Geobacillus stearothermophilus // Biotechnol. Appl. Biochem. 2011. V. 58. P. 250–255.

3. Alterthum F., Ingram L.O. Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli // Appl. Envir. Microbiol. 1989. V. 55. P. 1943–1948.

4. Ash C., Farrow J.A.E., Wallbanks S., Collins M.D. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences // Lett. Appl. Microbiol. 1991. V. 13. P. 202–206.

5. Assareh R., Shahbani Zahiri H., Akbari Noghabi K. et al. Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated barley and wheat straws // Biores. Technol. 2012. V. 120. P. 99–105.

6. Balan A., Ibrahim D., Abdul Rahim R., Ahmad Rashid F.A. Purification and characterization of a thermostable lipase from Geobacillus thermodenitrificans IBRL-nra // Enzyme Res. 2012. V. 2012. P. 987523.

7. Banat I.M., Marchant R., Rahman T.J. Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov. // Int. J. Syst. Evol. Microbiol. 2004. V. 54. P. 2197–2201.

8. Bartosiak-Jentys J., Eley K., Leak D.J. Application of pheB as a reporter gene for Geobacillus sрp., enabling qualitative colony screening and quantitative analysis of promoter strength // Appl. Envir. Microbiol. 2012. V. 78. P. 5945–5947.

9. Bartosiak-Jentys J., Hussein A.H., Lewis C.J., Leak D.J. Modular system for assessment of glycosyl hydrolase secretion in Geobacillus thermoglucosidasius // Microbiology. 2013. V. 159. P. 1267–1275.

10. Ben-David A., Bravman T., Balazs Y.S. et al. Glycosynthase activity of Geobacillus stearothermophilus GH52 betaxylosidase: efficient synthesis of xylooligosaccharides from alpha-D-xylopyranosyl fluoride through a conjugated reaction // Eur. J. Chem. Biol. 2007. V. 8. P. 2145–2151.

11. Canakci S., Inan K., Kacagan M., Belduz A.O. Evaluation of arabinofuranosidase and xylanase activities of Geobacillus sрp. isolated from some hot springs in Turkey // J. Microbiol. Biotechnol. 2007. V. 17. P. 1262–1270.

12. Canakci S., Cevher Z., Inan K. et al. Cloning, purification and characterization of an alkali-stable endoxylanase from thermophilic Geobacillus sp. 71 // World J. Microbiol. Biotechnol. 2012. V. 28. P. 1981–1988.

13. Chang S., Cohen S.N. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA // Mol. Gen. Genet. 1979. V. 168. P. 111–115.

14. Cheong K.W., Leow T.C., Rahman R.N.Z.R.A. et al. Reductive alkylation causes the formation of a molten globule-like intermediate structure in Geobacillus zalihae strain T1 thermostable lipase // Appl. Biochem. Biotechnol. 2011. V. 164. P. 362–375.

15. Coorevits A., Logan N.A., Dinsdale A.E. et al. Bacillus thermolactis sp. nov., isolated from dairy farms, and emended description of Bacillus thermoamylovorans // Int. J. Syst. Evol. Microbiol. 2011. V. 61. P. 1954–1961.

16. Cripps R.E., Eley K., Leak D.J. et al. Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production // Metab. Eng. 2009. V. 11. P. 398–408.

17. De Benedetti E.C., Rivero C.W., Britos C.N. et al. Biotransformation of 2,6-diaminopurine nucleosides by immobilized Geobacillus stearothermophilus // Biotechnol. Progr. 2012. V. 28. P. 1251–1256.

18. De Rossi E., Brigidi P., Rossi M. et al. Characterization of grampositive broad host-range plasmids carrying a thermophilic replicon // Res. Microbiol. 1991. V. 142. P. 389–396.

19. Dinsdale A.E., Halket G., Coorevits A. et al. Emended descriptions of Geobacillus thermoleovorans and Geobacillus thermocatenulatus // Int. J. Syst. Evol. Microbiol. 2011. V. 61. P. 1802–1810.

20. Donk P.J. A highly resistant thermophilic organism // J. Bacteriol. 1920. V. 5. P. 373–374.

21. Ebrahimpour A., Rahman R.N., Basri M., Salleh A.B. High level expression and characterization of a novel thermostable, organic solvent tolerant, 1,3-regioselective lipase from Geobacillus sp. strain ARM // Biores. Technol. 2011. V. 102. P. 6972–6981.

22. Fong J.C.N., Svenson C.J., Nakasugi K. et al. Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost // Extremophiles. 2006. V. 10. P. 363–372.

23. Fortina M.G., Mora D., Schumann P. et al. Reclassification of Saccharococcus caldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmad et al. 2000) comb. nov. // Int. J. Syst. Evol. Microbiol. 2001. V. 51. P. 2063–2071.

24. Gerasimova J., Kuisiene N. Characterization of the novel xylanase from the thermophilic Geobacillus thermodenitrificans JK1 // Mikrobiologiia. 2012. V. 81. P. 457–463.

25. Goh K.M., Kahar U.M., Chai Y.Y. et al. Recent discoveries and applications of Anoxybacillus // Appl. Microbiol. Biotechnol. 2013. V. 97. P. 1475–1488.

26. Gordon R.E., Smith N.R. Aerobic sporeforming bacteria capable of growth at high temperatures // J. Bacteriol. 1949. V. 58. P. 327–341.

27. Hartley B.S., Shama G. Novel ethanol fermentations from sugar cane and straw // Phil. Trans. Royal Soc. A. 1987. V. 321. P. 555–568.

28. Imanaka T., Fujii M., Aramori I., Aiba S. Transformation of Bacillus stearothermophilus with plasmid DNA and characterization of shuttle vector plasmids between Bacillus stearothermophilus and Bacillus subtilis // J. Bacteriol. 1982. V. 149. P. 824–830.

29. Ingram L.O., Conway T., Clark D.P. et al. Genetic engineering of ethanol production in Escherichia coli // Appl. Envir. Microbiol. 1987. V. 53. P. 2420–2425.

30. Kuisiene N., Raugalas J., Chitavichius D. Geobacillus lituanicus sp. nov. // Int. J. Syst. Evol. Microbiol. 2004. V. 54. P. 1991–1995.

31. Liao H., McKenzie T., Hageman R. Isolation of a thermostable enzyme variant by cloning and selection in a thermophile // Proc. Natl Acad. Sci. USA. 1986. V. 83. P. 576–580.

32. Liu B., Zhang N., Zhao C. et al. Characterization of a recombinant thermostable xylanase from hot spring thermophilic Geobacillus sp. TC-W7 // J. Microbiol. Biotechnol. 2012. V. 22. P. 1388–1394.

33. Miñana-Galbis D., Pinzón D.L., Lorén J.G. et al. Reclassification of Geobacillus pallidus (Scholz et al., 1988) Banat et al. 2004 as Aeribacillus pallidus gen. nov., comb. nov. // Int. J. Syst. Evol. Microbiol. 2010. V. 60. P. 1600–1604.

34. Narumi I., Sawakami K., Nakamoto S. et al. A newly isolated Bacillus stearotheromophilus K1041 and its transformation by electroporation // Biotechnol. Techn. 1992. V. 6. P. 83–86.

35. Nazina T.N., Tourova T.P., Poltaraus A.B. et al. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus

36. thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans // Int. J. Syst. Evol. Microbiol. 2001. V. 51. P. 433–446.

37. Nazina T.N., Lebedeva E.V., Poltaraus A.B. et al. Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov. // Int. J. Syst. Evol. Microbiol. 2004. V. 54. P. 2019–2024.

38. Ng I.-S., Li C.-W., Yeh Y.-F. et al. A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures // Extremophiles. 2009. V. 13. P. 425–435.

39. Payton M.A., Hartley B.S. Mutants of Bacillus stearothermophilus lacking NAD-linked l-lactate dehydrogenase // FEMS Microbiol. Lett. 1985. V. 26. P. 333–336.

40. Quintana-Castro R., Díaz P., Valerio-Alfaro G. et al. Gene cloning, expression, and characterization of the Geobacillus thermoleovorans CCR11 thermoalkaliphilic lipase // Mol. Biotechnol. 2009. V. 42. P. 75–83.

41. Ratnadewi A.A.I., Fanani M., Kurniasih S.D. et al. β-DXylosidase from Geobacillus thermoleovorans IT-08: biochemical characterization and bioinformatics of the enzyme // Appl. Biochem. Biotechnol. 2013. V. 170. No. 8. P. 1950–1964.

42. Riyanti E.I., Rogers P.L. Kinetic evaluation of ethanol-tolerant thermophile Geobacillus thermoglucosidasius M10exg for ethanol production // Indones. J. Agric. Sci. 2009. V. 10. No. 1. P. 34–41.

43. Shallom D., Leon M., Bravman T. et al. Biochemical characterization and identification of the catalytic residues of a family 43 beta-D-xylosidase from Geobacillus stearothermophilus T-6 // Biochemistry. 2005. V. 44. P. 387–397.

44. Sung M.H., Kim H., Bae J.W. et al. Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost // Int. J. Syst. Evol. Microbiol. 2002. V. 52. P. 2251–2255.

45. Suzuki H., Yoshida K.-I. Genetic transformation of Geobacillus kaustophilus HTA426 by conjugative transfer of host-mimicking plasmids // J. Microbiol. Biotechnol. 2012. V. 22. P. 1279–1287.

46. Suzuki H., Murakami A., Yoshida K.-I. Counterselection system for Geobacillus kaustophilus HTA426 through disruption of pyrF and pyrR // Appl. Envir. Microbiol. 2012. V. 78. P. 7376–7383.

47. Suzuki H., Yoshida K.-I., Ohshima T. Polysaccharide-degrading thermophiles generated by heterologous gene expres sion in Geobacillus kaustophilus HTA426 // Appl. Envir. Microbiol. 2013. V. 79. P. 5151–5158.

48. Takami H., Nishi S., Lu J. et al. Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench // Extremophiles. 2004a. V. 8. P. 351–356.

49. Takami H., Takaki Y., Chee G.-J. et al. Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus // Nucl. Acids Res. 2004b. V. 32. P. 6292–6303.

50. Talarico L.A., Gil M.A., Yomano L.P. et al. Construction and expression of an ethanol production operon in Gram-positive bacteria // Microbiol. 2005. V. 151. P. 4023–4031.

51. Tang Y.J., Sapra R., Joyner D. et al. Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant Geobacillus strain // Biotechnol. Bioeng. 2009. V. 102. P. 1377–1386.

52. Taylor M.P., Esteban C.D., Leak D.J. Development of a versatile shuttle vector for gene expression in Geobacillus sрp. // Plasmid. 2008. V. 60. P. 45–52.

53. Taylor M.P., Eley K.L., Martin S. et al. Thermophilic ethanologenesis: future prospects for second-generation bioethanol production // Trends Biotechnol. 2009. V. 27. P. 398–405.

54. Thompson A.H., Studholme D.J., Green E.M., Leak D.J. Heterologous expression of pyruvate decarboxylase in Geobacillus thermoglucosidasius // Biotechnol. Lett. 2008. V. 30. P. 1359–1365.

55. Verhaart M.R.A., Bielen A.A.M., van der Oost J. et al. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal // Env. Technol. 2010. V. 31. P. 993–1003.

56. Verma D., Anand A., Satyanarayana T. Thermostable and alkalistable endoxylanase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1: cloning, expression, characteristics and its applicability in generating xylooligosaccharides and fermentable sugars // Appl. Biochem. Biotechnol. 2013. V. 170. P. 119–130.

57. Wagschal K., Heng C., Lee C.C. et al. Purification and characterization of a glycoside hydrolase family 43 beta-xylosidase from Geobacillus thermoleovorans IT-08 // Appl. Biochem. Biotechnol. 2009. V. 155. P. 304–313.

58. White D., Sharp R.J., Priest F.G. A polyphasic taxonomic study of thermophilic bacilli from a wide geographical area // Antonie van Leeuwenhoek. 1993. V. 64. P. 357–386.

59. Woese C.R., Fox G.E., Zablen L. et al. Conservation of primary structure in 16S ribosomal RNA // Nature. 1975. V. 254. P. 83–86.

60. Wu L.J., Welker N.E. Protoplast transformation of Bacillus stearothermophilus NUB36 by plasmid DNA // J. General Microbiol. 1989. V. 135. P. 1315–1324.

61. Wu S., Liu B., Zhang X. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific // Appl. Microbiol. Biotechnol. 2006. V. 72. P. 1210–1216.

62. Xiao Z., Wang X., Huang Y. et al. Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain // Biotechnol. Biofuels. 2012. V. 5. P. 88.


Review

Views: 609


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)