Preview

Vavilov Journal of Genetics and Breeding

Advanced search

GEOMETRIC PROPERTIES OF EVOLUTIONARY DISTANCES

Abstract

One way to study the variability of biologic objects is their geometrization: the objects are presented by points in a multidimensional space in such a way that the distances between the points would be best consistent with the dissimilarities between objects. If the dissimilarities between the objects are Euclidean distances, this task (up to translation, rotation and reflection) is solved by metric scaling. We consider the metric properties of some well-known evolutionary distances of nucleotide sequences. It is shown that the Jukes-Cantor and Kimura distances are not metrics. We introduce a new Kimura distance analog, the PQdistance. It is shown that the p and PQ distances are the squares of Euclidean metrics named Ep-distance and EPQ-distance, respectively. The applicability of the EPQ distance is illustrated by the example of a cytochrome b sequence set of 12 rodent species from West Siberia and Altai, taken from the GenBank, and compared with the results of the use of the LogDet-distance.

About the Authors

V. M. Efimov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia Tomsk National Research State University, Tomsk, Russia
Russian Federation


M. A. Melchakova
Novosibirsk National Research State University, Novosibirsk, Russia
Russian Federation


V. Yu. Kovaleva
Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
Russian Federation


References

1. Абрамсон Н.И., Лисовский А.А. Полевочьи // Млекопитающие России: систематико-географический справочник / Ред. И.Я. Павлинов, А.А. Лисовский. М.: КМК, 2012. С. 220–276.

2. Ефимов В.М., Штайгер И.А., Полунин Д.А. и др. Программно-алгоритмический комплекс для многомерного анализа микрочиповых данных // II Междунар. науч.-практ. конф. «Постгеномные методы анализа в биологии, лабораторной и клинической медицине: геномика, протеомика, биоинформатика». Новосибирск, Россия, 14–17 ноября, 2011. С. 120.

3. Ковалева В.Ю., Абрамов С.А., Дупал Т.А. и др. Анализ соответствия и комбинирование молекулярно-генетических и морфологических данных в зоологической систематике // Изв. РАН. Сер. биол. 2012. Вып. 4. С. 404–414.

4. Ковалева В.Ю., Литвинов Ю.Н., Ефимов В.М. Землеройки (Soricidae, Eulipotyphla) Сибири и Дальнего Востока: комбинирование и поиск конгруэнтности молекулярно-генетических и морфологических данных // Зоол. журнал. 2013. Т. 92. Вып. 11. С. 1–15.

5. Лукашов В.В. Молекулярная эволюция и филогенетический анализ. М.: БИНОМ, Лаборатория знаний, 2009. 256 с.

6. Мельчакова М.А. Геометрические аналоги генетических расстояний: Магистерская диссертация. Новосибирск: НГУ, 2013. 33 с.

7. Мельчакова М.А., Ефимов В.М. О метрических свойствах эволюционных расстояний // Тез. докл. конф. «Соврем. пробл. математики, информатики и биоинформатики», посвящ. 100-летию А.А. Ляпунова, 11–14 окт. 2011 г. Новосибирск, 2011. С. 88.

8. Млекопитающие России: систематико-географический справочник / Ред. И.Я. Павлинов, А.А. Лисовский. М.: КМК, 2012. 604 с.

9. Ней М., Кумар С. Молекулярная эволюция и филогенетика. Киев: КВЩ, 2004. 418 с.

10. Петровский А.Б. Пространства множеств и мультимножеств. М.: Едиториал УРСС, 2003. 248 с.

11. Felsenstein J. Inferring phylogenies. Sunderland: Sinauer Associates, 2003. 664 p.

12. Hamming R.W. Error detecting and error correcting codes // Bell Syst. Tech. J. 1950. V. 29. Nо. 2. P. 147–160.

13. Jukes T.H., Cantor C.R. Evolution of protein molecules // Mammalian Protein Metabolism / Ed. H.N. Munro. N.Y.: Acad. Press, 1969. P. 21–132.

14. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences // J. Mol. Evol. 1980. V. 16. Nо. 2. P. 111–120.

15. Klingenberg C.P., Ekau W. A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae) // Biol. J. Linn. Soc. 1996. V. 59. Nо. 2. P. 143–177.

16. Klingenberg C.P., Gidaszewski N.A. Testing and quantifying phylogenetic signals and homoplasy in morphometric data // Syst. Biol. 2010. V. 59. Nо. 3. P. 245–261.

17. Lockhart P.J., Steel M.A., Hendy M.D., Penny D. Recovering evolutionary trees under a more realistic model of sequence evolution // Mol. Biol. Evol. 1994. V. 11. Nо. 4. P. 605–612.

18. Mammal species of the world: a taxonomic and geographic reference / Eds D.E. Wilson, D.M. Reeder. 3rd ed. Baltimore: J. Hopkins Univ. Press, 2005. 2142 p. Available at http://www.departments.bucknell.edu/biology/resources/msw3/ browse.asp

19. Mantel N. The detection of disease clustering and a generalized regression approach // Cancer Res. 1967. V. 27. P. 209–220.

20. Mantel N., Valand R.S. A technique of nonparametric multivariate analysis // Biometrics. 1970. V. 26. P. 547–558.

21. Polly P.D., Lawing A.M., Fabre A.C., Goswami A. Phylogenetic principal components analysis and geometric morphometrics // Hystrix, the Italian J. Mammalogy. 2013. V. 24. Nо. 1. P. 1–9.

22. Revell L.J. Size-correction and principal components for interspecific comparative studies // Evolution. 2009. V. 63. P. 3258–3268.

23. Shepard R.N. The analysis of proximities: multidimensional scaling with an unknown distance function. 1 // Psyсhometrika. 1962. V. 27. Nо. 2. P. 125–140.

24. Tamura K., Peterson D., Peterson N. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood; evolutionary distance; and maximum parsimony methods // Mol. Biol. Evol. 2011. V. 28. P. 2731–2739.

25. Torgerson W.S. Multidimensional scaling: I. Theory and method // Psychometrika. 1952. V. 17. Nо. 4. P. 401–419.

26. Zharkikh A. Estimation of evolutionary distances between nucleotide sequences // J. Mol. Еvol. 1994. V. 39. P. 315–329.


Review

Views: 518


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)