Molecular identification of the stem rust resistance genes in the introgression lines of spring bread wheat
https://doi.org/10.18699/VJ19.494
Abstract
A total of 57 introgression lines and 11 cultivars of spring bread wheat developed by All-Russian Institute of Plant Protection and cultivated in the Volga Region were analyzed. The lines were obtained with the participation of CIMMYT synthetics, durum wheat cultivars, direct crossing with Agropyron elongatum (CI-7-57) and have introgressions from related species of bread wheat, namely translocations from Ag. elongatum (7DS-7DL-7Ae#1L), Aegilops speltoides (2D-2S), Ae. ventricosum (2AL-2AS-2MV#1), Secale cereale (1BL-1R#1S), 6Agi (6D) substitution from Ag. intermedium and triticale Satu. Cultivars and lines were assessed for resistance to Saratov, Lysogorsk, Derbent and Omsk stem rust pathogen populations (Puccinia graminis f. sp. tritici), and analyzed for the presence of the known Sr resistance genes using molecular markers. The analysis of the cultivars’ and lines’ resistance to the Saratov pathogen population in the field, as well as to Omsk, Derbent and Lysogorsk populations at the seedling stage, showed the loss of efficiency of the Sr25 and Sr6Agi genes. The Sr31 gene remained effective. Thirty one wheat lines out of 57 (54.4 % of samples) were resistant to all pathogen populations taken into analysis. The Sr31/Lr26, Sr25/Lr19, Sr28, Sr57/Lr34 and Sr38/Lr37 genes were identified in the introgression lines. The Sr31/Lr26 gene was identified in 19 lines (33.3 % of samples). All lines carrying the 1RS.1BL translocation (Sr31/Lr26) were resistant to all pathogen populations taken into analysis. The Sr25/Lr19 gene was identified in 49 lines (86 %). The gene combination Sr31/Lr26+ Sr25/Lr19 was identified in 15 lines (26.3 %). The gene combinations Sr38/Lr37+Sr25/Lr19, Sr57/Lr34+Sr25/Lr19 and Sr31/Lr26+Sr25/Lr19+Sr28 were identified in 3 introgression lines. These three lines were characterized by resistance to the pathogen populations studied in this work. The Sr2, Sr24, Sr26, Sr32, Sr36 and Sr39 genes were not detected in the analyzed wheat lines.
About the Authors
O. A. BaranovaRussian Federation
S. N. Sibikeev
Russian Federation
A. E. Druzhin
Russian Federation
References
1. Ali N., Heslop-Harrison J.S., Ahmad H., Graybosch R.A., Hein G.L., Schwarzacher T. Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance. Heredity (Edinb). 2016;117:114-123. DOI 10.1038/ hdy.2016.36.
2. Badaeva E.D., Ruban A.S., Shishkina A.A., Sibikeev S.N., Druzhin A.E., Surzhikov S.A., Dragovich A.Yu. Genetic classification of Aegilops columnaris Zhuk. (2n = 4x = 28, Uc Uc Xc Xc ) chromosomes based on FISH analysis and substitution patterns in common wheat Ae. columnaris introgression lines. Genome. 2018;61(2):131-143.
3. Baranova O.A., Lapochkina I.F., Anisimova A.V., Gajnullin N.R., Iordanskaya I.V., Makarova I.Yu. Identification of Sr genes in new common wheat sources of resistance to stem rust race Ug99 using molecular markers. Russ. J. Genet.: Appl. Res. 2016;6(3):344-350. DOI 10.1134/S2079059716030011.
4. Bhattacharya S. Deadly new wheat disease threatens Europe’s crops. Nature. 2017;542:145-146. Hailu E., Woldaeb G., Denbel W., Wubishet Alemu, Tekelay Abebe, Agengehu Mekonnen. Distribution of stem rust (Puccinia graminis f. sp. tritici) races in Ethiopia. Plant. 2015;3(2):15-19. DOI 10.11648/j.plant.20150302.11.
5. Jin Y., Singh R.P., Ward R.W., Wanyera R., Kinyua M., Njau P., Fetch T., Pretorius Z.A., Yahyaoui A. Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 2007;91:1096-1099.
6. Koyshybayev M. Features of the development of rust and Septoria leaf spot on spring wheat in Northern Kazakhstan. Zashchita i Karantin Rasteniy = Plant Protection and Quarantine. 2017;11:21-24 (in Russian)
7. Lapochkina I.F., Baranova O.A., Shamanin V.P., Volkova G.V., Gainullin N.R., Lazareva E.N., Gladkova E.V., Anisimova A.V., Galinger D.N., Vaganova O.F. The development of the initial material of spring common wheat for selective breeding for resistance to stem rust (Puccinia graminis Pers. f. sp. tritici), including the Ug99 race in Russia. Russ. J. Genet.: Appl. Res. 2017;7(3):308-317. DOI 10.1134/S207905971703008X.
8. Leonova I.N. Molecular markers: implementation in crop plant breeding for identification, introgression, and gene pyramiding. Russ. J. Genet.: Appl. Res. 2013;3(6):464-473. DOI 10.1134/ S2079059713060051.
9. Leonova I.N., Budashkina E.B. The study of agronomical traits determining the productivity of the Triticum aestivum/Triticum timopheevii introgression lines with resistance to fungal diseases. Russ. J. Genet.: Appl. Res. 2017;7(3):299-307. DOI 10.1134/ S2079059717030091.
10. Lewis C.M., Persoons A., Bebber D.P., Kigathi R.N., Maintz J., Findlay K., Corredor-Moreno P., Harrington S.A., Kangara N., Berlin A., Garcia R., German S.E., Hanzalova A., Hodson D., Hovmoller M.S., Huerta-Espino J., Imtiaz M., Iqbal Mirza J., Justesen A.F., Niks R.E., Omarani A., Patpour M., Pretorius Z.A., Roohparvar R., Sela H., Singh R.P., Steffenson B., Visser B., Fenwick P.M., Thomas J., Wulff B.B., Saunders D.G.O. Potential for re-emergence of wheat stem rust in the United Kingdom. Communications Biology. 2018;1:13. DOI 10.1038/s42003-018-0013-y.
11. Markelova T.S. Phytosanitary situation in the agrocenosis of grain crops in the Volga Region. Zashchita i Karantin Rasteniy = Plant Protection and Quarantine. 2015;5:22-23 (in Russian)
12. McIntosh R.A., Wellings C.R., Park R.F. (Eds.). Wheat Rusts. An Atlas of Resistance Genes. CSIRO Australia, 1995. McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers J., Morris C., Somers D.J., Appels R., Devos K.M. Catalogue of Gene Symbols for Wheat. 2013. http://www.shigen.nig.ac.jp/wheat/komugi/genes/ symbolClassList.jsp
13. Miedaner T., Korzun V. Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology. 2012;102:560-566. DOI 10.1094/PHYTO-05-11-0157.
14. Murray M.G., Thompson W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8(19):4321-4326. DOI 10.1093/nar/8.19.4321.
15. Olivera P., Newcomb M., Flath K., Sommerfeldt-Impe N., Szabo L., Carter M., Luster D., Jin Y. Characterization of Puccinia graminis f. sp. tritici isolates derived from an unusual wheat stem rust outbreak in Germany in 2013. Plant Pathol. 2017;66:1258-1266. DOI 10.1111/ppa.12674.
16. Pretorius Z.A., Singh R.P., Wagoire W.W., Payne T.S. Detection of virulence to wheat stem rust resistance genes Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis. 2000;84(2):203. DOI 10.1094/PDIS.2000.84.2.203B.
17. Rakszegi M., Molnár I., Lovegrove A., Darko E., Farkas A., Lang L., Bedo Z., Dolezel J., Molnar-Lang M., Shewry P. Addition of Aegilops U and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour. Front. Plant Sci. 2017;8:1529. DOI 10.3389/fpls.2017.01529.
18. Roelfs A.P., Singh R.P., Saaru E.E. Rust Diseases of Wheat: Concepts and Methods of Disease Management. Mexico, D.F.: CIMMYT, 1992.
19. Salina E.A., Adonina I.G., Badaeva E.D., Kroupin P.Y., Stasyuk A.I., Leonova I.N., Shishkina A.A., Divashuk M.G., Starikova E.V., Khuat T.M.L., Syukov V.V., Karlov G.I. A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases. Euphytica. 2015;204:91-101. DOI 10.1007/s10681-O14-1344-5.
20. Sibikeev S.N., Druzhin A.E., Golubeva T.D., Kalintseva T.V. The evaluation of spring bread wheat cultivars, NILs and promise lines to stem rust. Annual Wheat Newsletter. KSU, USA. 2008;54:113.
21. Sibikeev S.N., Druzhin A.E., Golubeva T.D., Kalintseva T.V. The evaluation of spring bread wheat cultivars, NILs and promise lines to leaf, stem and stripe rusts in 2008 year. Annual Wheat Newsletter. KSU, USA. 2009;55:174.
22. Sibikeev S.N., Druzhin A.E., Badaeva E.D., Shishkina A.A., Dragovich A.Y., Gultyaeva E.I., Kroupin P.Y., Karlov G.I., Khuat T.M., Divashuk M.G. Comparative analysis of Agropyron intermedium (Host) Beauv 6Agi and 6Agi2 chromosomes in bread wheat cultivars and lines with wheat–wheatgrass substitutions. Russ. J. Genet. 2017a;53(3):314-324. DOI 10.1134/S1022795417030115.
23. Sibikeev S.N., Druzhin A.E., Vlasovec L.T., Golubeva T.D., Kalintseva T.V. The reaction of introgression lines of soft spring wheat to leaf rust, stem rust and tan spot in 2016. Annual Wheat Newsletter. KSU, USA. 2017b;63:57-58.
24. Singh D., Park R.F., McIntosh R.A., Bariana H.S. Characteristic of stem rust and stripe rust seedling resistance genes in selected wheat cultivars from the United Kingdom. J. Plant Pathol. 2008;90(3): 553-562.
25. Sochalova L.P. Sources of wheat resistance genes to leaf and stem pathogens on the territory of the Novosibirsk Region. Zernovoe Khozjaistvo Rossii = Grain Economy of Russia. 2016;2:45-49 (in Russian)
26. Stackman E.C., Stewart D.M., Loegering W.Q. Identification of Physiologic Races of Puccinia graminis var. tritici. US Department of Agriculture; Agric. Res. Service,1962.
27. Vasilova N.Z., Askhadullin Dam.F., Askhadullin Dan.F. Stem rust epiphytotic on soft spring wheat in Tatarstan. Zashchita i Karantin Rasteniy = Plant Protection and Quarantine. 2017;2:27-28. (in Russian)
28. Wulf B.B.H., Moscou J.M. Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front. Plant Sci. 2014; 5:692.
29. Yaniv E., Raats D., Ronin Y., Korol A.B., Grama A., Bariana H., Dubcovsky J., Schulman A.H., Fahima T. Evaluation of marker-assisted selection for the stripe rust resistance gene Yr15, introgressed from wild emmer wheat. Mol. Breed. 2015;35:43. DOI 10.1007/s11032- 015-0238-0.