Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Стресс-индуцированная активация транспозонов в экологическом морфогенезе

https://doi.org/10.18699/VJ19.506

Полный текст:

Аннотация

Инсерционный мутагенез, обусловленный транспозициями мобильных элементов, лежит в основе изменений геномов в естественном отборе. Транспозоны являются сенсором экологических стрессовых воздействий, благодаря чему воздействия стрессоров на организмы потенцируют изменения расположения транспозонов, что способствует адаптации и видообразованию. Это обусловлено изменением механизмов морфогенеза, так как транспозоны содержат в своем составе регуляторные последовательности, оказывающие циси транс-воздействие на экспрессию специфических белок-кодирующих генов. Мобильные генетические элементы способны также к сайт-специфическим перемещениям, которые приводят к активации генов стрессового ответа. Кроме того, транспозоны служат источниками микроРНК, siРНК, длинных некодирующих РНК и сайтов связывания с транскрипционными факторами. В эволюции благодаря мобильным генетическим элементам возникают новые белок-кодирующие гены путем одомашнивания, экзонизации и дупликации. Данные гены содержат нуклеотидные последовательности, которые взаимодействуют с процессированными из транспозонных транскриптов некодирующими РНК, в связи с чем они находятся под управлением эпигенетических регуляторных сетей с участием мобильных генетических элементов. Поэтому наследуемые особенности расположения и состава транспозонов могут иметь значение в характере реагирования на определенные экологические стрессорные воздействия. Это служит основой для отбора и выживания особей со специфическим составом и характером расположения транспозонов, способствующих адаптации при определенных средовых условиях. В эволюции свойство транспозонов перемещаться в специфические сайты генома, регулировать экспрессию генов и взаимодействовать с транскрипционными факторами, наряду со способностью реагировать на экологические стрессоры, является основой для быстрой изменчивости и видообразования за счет модулирования управления онтогенезом. Роль транспозонов в экологическом морфогенезе подтверждена данными об их тканеи стадиеспецифических особенностях активации и участии в управлении дифференцировкой клеток в эмбриогенезе и постнатальном развитии. Дополнительным источником изменчивости служит горизонтальный перенос транспозонов, способствующий изменению их состава в геномах.

Об авторах

Р. Н. Мустафин
Башкирский государственный медицинский университет
Россия
Уфа


Э. К. Хуснутдинова
Башкирский государственный медицинский университет; Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук
Россия
Уфа


Список литературы

1. Assinger A., Yaiw K.C., Gottesdorfer I., Leib-Mosch C., SoderbergNaucler C. Human cytomegalovirus (HCMV) induces human endogenous retrovirus (HERV) transcription. Retrovirology. 2013;10: 132. DOI 10.1186/1742-4690-10-132.

2. Barrera-Figueroa B.E., Gao L., Wu Z., Zhou X., Zhu J., Jin H., Liu R., Zhu J.K. High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC Plant Biol. 2012;12:132.

3. Cheng L.C., Pai T.W., Li L.A. Regulation of human CYP11B1 and CYP11B2 promoters by transposable elements and conserved cis elements. Steroids. 2012;77:100-109.

4. Cheresiz S.V., Yurchenko N.N., Ivannikov A.V., Zakharov I.K. Transposable elements and stress. Vestnik VOGiS = Herald of Vavilov Society for Geneticists Breeding Scientists. 2008;12(1/2): 216-241. (in Russian)

5. Cho J. Transposon-derived non-coding RNAs and their function in plants. Front. Plant Sci. 2018;9:600.

6. Couzigou J.M., Andre O., Guillotin B., Alexandre M., Combier J.P. Use of microRNA-encoded peptide miPEP172c to stimulate nodulation in soybean. New Phytol. 2016;211(2):379-381.

7. Curran S.C. Exploring Eucladoceros ecomorphology using geometric morphometrics. Anat. Rec. 2015;298:291-313.

8. Daniels S.B., Peterson K.R., Strausbaugh L.D., Kidwell M.G., Chovnick A. Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics. 1990;124(2):339355.

9. de Souza F.S., Franchini L.F., Rubinstein M. Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong? Mol. Biol. Evol. 2013;30(6):1239-1251.

10. Deng P., de Vargas Roditi L., van Ditmarsch D., Xavier J.B. The ecological basis of morphogenesis: branching patterns in swarming colonies of bacteria. New J. Phys. 2014;16:15006. DOI 10.1088/13672630/16/1/015006.

11. Dotto B.R., Carvalho E.L., da Silva A.F., Dezordi F.Z., Pinto P.M., Campos T.L., Rezende A.M., Wallau G.D.L. HTT-DB: new features and updates. Database (Oxford). 2018;bax102. DOI 10.1093/ database/bax102.

12. Dowen R.H., Pelizzola M., Schmitz R.J., Lister R., Dowen J.M., Nery J.R., Dixon J.E., Ecker J.R. Widespread dynamic DNA methylation in response to biotic stress. Proc. Natl. Acad. Sci. USA. 2012; 109:E2183-E2191.

13. Dupressoir A., Lavialle C., Heidmann T. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta. 2012;33:663-671.

14. Fan J., Papadopoulos V. Transcriptional regulation of translocator protein (Tspo) via a SINE B2-mediated natural antisense transcript in MA-10 Leydig cells. Biol. Reprod. 2012;86(5):147.

15. Feng G., Leem Y.E., Levin H.L. Transposon integration expression of stress response genes. Nucleic Acids Res. 2013;41(2):775-789.

16. Feschotte C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 2008;9:397-405.

17. Filee J. Giant viruses and their mobile genetic elements: the molecular symbiosis hypothesis. Curr. Opin. Virol. 2018;33:81-88.

18. Finatto T., de Oliveira A., Chaparro C., da Maia L.C., Farias D.R., Woyann L.G., Mistura C.C., Soares-Bresolin A.P., Llauro C., Panaud O., Picault N. Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice. Rice. 2015;8:13.

19. Fischer M.G., Suttle C.A. A virophage at the origin of large DNA transposons. Science. 2011;332(6026):231-234.

20. Fort A., Hashimoto K., Yamada D., Salimullah M., Keya C.A., Saxena A., Bonetti A., Voineagu I., Bertin N., Kratz A., Noro Y., Wong C.H., de Hoon M., Andersson R., Sandelin A., Suzuki H., Wei C.L., Koseki H., FANTOM Consortium, Hasegawa Y., Forrest A.R., Carninci P. Deep transcriptome profiling of mammalian stem cells supports maintenance. Nat. Genet. 2014;46:558-566.

21. Gao D., Chu Y., Xia H., Xu C., Heyduk K., Abernathy B., OziasAkins P., Leebens-Mack J.H., Jackson S.A. Horizontal transfer of non-LTR retrotransposons from arthropods to flowering plants. Mol. Biol. Evol. 2018;35(2):354-364.

22. Garcia-Perez J.L., Marchetto M.C., Muotri A.R., Coufal N.G., Gage F.H., O’Shea K.S., Moran J.V. LINE-1 retrotransposition in human embryonic stem cells. Hum. Mol. Genet. 2007;16:15691577.

23. Gerdes P., Richardson S.R., Mager D.L., Faulkner G.J. Transposable elements in the mammalian embryo: pioneers surviving through stealth and service. Genome Biol. 2016;17:100.

24. Gim J., Ha H., Ahn K., Kim D.S., Kim H.S. Genome-wide identification and classification of microRNAs derived from repetitive elements. Genomic Inform. 2014;12:261-267.

25. Grandbastien M.A. LTR retrotransposons, handy hitchhikers of plant regulation and stress response. Biochim. Biophys. Acta. 2015; 1849(4):403-416.

26. Henaff E., Vives C., Desvoyes B., Chaurasia A., Payet J., Gutierrez C., Casacuberta J.M. Extensive amplification of the E2F transcription factor binding sites by transposons during evolution of Brassica species. Plant J. 2014;77:852-862.

27. Hencken C.G., Li X., Craig N.L. Functional characterization of an active Rag-like transposase. Nat. Struct. Mol. Biol. 2012;19(8):834836. DOI 10.1038/nsmb.2338.

28. Honson D.D., Macfarlan T.S. A lncRNA-like role for LINE1s in development. Dev. Cell. 2018;46(2):132-134.

29. Hunter R.G., Gagnidze K., McEwen B.S., Pfaff D.W. Stress and the dynamic genome: steroids, epigenetics, and the transposome. Proc. Natl. Acad. Sci. USA. 2015;112(22):6828-6833.

30. Hunter R.G., McEwen B.S. Stress and anxiety across the lifespan: structural plasticity and epigenetic regulation. Epigenomics. 2013;5(2): 177-194.

31. Hunter R.G., Murakami G., Dewell S., Seligsohn M., Baker M.E., Datson N.A., McEwen B.S., Pfaff D.W. Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc. Natl. Acad. Sci. USA. 2012;109:17657-17662.

32. Ito H. Small RNAs and transposon silencing in plants. Dev. Growth Differ. 2012;54(1):100-107.

33. Ito H., Kim J.M., Matsunaga W., Saze H., Matsui A., Endo T.A., Harukawa Y., Takagi H., Yaegashi H., Masuta Y., Masuda S., Ishida J., Tanaka M., Takahashi S., Morosawa T., Toyoda T., Kakutani T., Kato A., Seki M. A stress-activated transposon in Arabidopsis induces transgenerational abscisic acid insensititvity. Sci. Rep. 2016;6:23181. DOI 10.1038/srep23181.

34. Ito J., Suqimoto R., Nakaoka H., Yamada S., Kimura T., Hayano T., Inoue I. Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses. PLoS Genet. 2017;13(7):e1006883.

35. Kaidanov L.Z., Galkin A.P., Iovleva O.V., Sideleva O.G. Directed transpositions in the genome of the hobo mobile element in a long selected strain of Drosophila melanogaster. Tsitologiya i Genetika = Cytology and Genetics. 1996;30(1):23-30. (in Russian)

36. Kapusta A., Kronenberg Z., Lynch V.J., Zhuo X., Ramsay L., Bourgue G., Yandell M., Feschotte C. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet. 2013;9:e1003470.

37. Khesin R.B. Genome Inconstancy. Moscow: Nauka Publ., 1984. (in Russian)

38. Kojima K.K. Structural and sequence diversity of eukaryotic transposable elements. Genes Genet. Syst. 2018;9:1-20. DOI 10.1266/ggs.18-0024.

39. Krupovic M., Koonin E.V. Self-synthesizing transposons: unexpected key players in the evolution of viruses and defense systems. Curr. Opin. Microbiol. 2016;31:25-33.

40. Kubiak M.R., Makalowska I. Protein-coding genes’ retrocopies and their functions. Viruses. 2017;9(4):80.

41. Le T.N., Schuman U., Smith N.A., Tiwari S., Au P.C., Zhu Q.H., Taylor J.M., Kazan K., Llewellyn D.J., Zhang R., Dennis E.S., Wang M.B. DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol. 2014;15:458.

42. Li Y., Li C., Xia J., Jin Y. Domestication of transposable elements into microRNA genes in plants. PLoS One. 2011;6:e19212.

43. Lin L., Shen S., Tye A., Cai J.J., Jiang P., Davidson B.L., Xing Y. Diverse splicing patterns of exonized Alu elements in human tissues. PLoS Genet. 2008;4(10):e1000225.

44. Lin R., Ding L., Casola C., Ripoll D.R., Feschotte C., Wang H. Transposase-derived transcription factors regulate light signaling in Arabidopsis. Scienсe. 2007;318:1302-1305.

45. Llorens C., Munoz-Pomer A., Bernad L., Botella H., Moya A. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol. Direct. 2009;4:41-72.

46. Lorenzetti A.P.R., de Antonio G.Y.A., Paschoal A.R., Domingues D.S. Plant TE-MIR DB: a database for transposable element-related microRNAs in plant genomes. Funct. Integr. Genomics. 2016;16: 235-242.

47. Lowe C.B., Haussler D. 29 mammalian genomes reveal novel exaptations of mobile elements for likely regulatory functions in the human genome. PLoS One. 2012;7(8):e43128.

48. Lu Y., Feng F., Yang Y., Gao X., Cui J., Zhang C., Zhang F., Xu Z., Qv J., Wang C., Zeng Z., Zhu Y., Yang Y. LINE-1 ORF-1p functions as a novel androgen receptor co-activator and promotes the growth of human prostatic carcinoma cells. Cell. Signal. 2013;25:479-489.

49. Macfarlan T.S., Gifford W.D., Driscoll S., Lettieri K., Rowe H.M., Bonanomi D., Firth A., Singer O., Trono D., Pfaff S.L. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature. 2012;487(7405):57-63.

50. Mak K.S., Burdach J., Norton L.J., Pearson R.C., Crossley M., Funnell A.P. Repression of chimeric transcripts emanating from endogenous retrotransposons by a sequence-specific transcription factor. Genome Biol. 2014;15(4):R58.

51. Makarevitch I., Waters A.J., West P.T., Stitzer M., Hirsch C.N., RossIbarra J., Springer N.M. Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet. 2015;11(1):e1004915.

52. Malfavon-Borja R., Feschotte C. Fighting fire with fire: endogenous retrovirus envelopes as restriction factors. J. Virol. 2015;89(8):40474050.

53. Markel A.L. Stress and evolution. Vestnik VOGiS = Herald of Vavilov Society for Geneticists Breeding Scientists. 2008;12(1/2): 206-215. (in Russian)

54. McClintock B. The significance of responses of the genome to challenge. Science. 1984;226:792-801.

55. Mustafin R.N. Specific features of the epigenetic regulation of plant ontogenesis. Uspekhi Sovremennoi Biologii = Biology Bulletin Reviews. 2018;138(3):227-242. (in Russian)

56. Mustafin R.N., Khusnutdinova E.K. Non-coding parts of genomes as the basis of epigenetic heredity. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(6):742749. (in Russian)

57. Mustafin R.N., Khusnutdinova E.K. Epigenetic hypothesis of the role of peptides in aging. Adv. Gerontol. 2018a;8(3):200-209.

58. Mustafin R.N., Khusnutdinova E.K. The role of transposable elements in emergence of Metazoa. Biochemistry (Moscow). 2018b;83(3): 185-199.

59. Pace J.K., Gilbert C., Clark M.S., Feschotte C. Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods. Proc. Natl. Acad. Sci. USA. 2008;105(44):17023-17028.

60. Palazzo A., Caizzi R., Viggiano L., Marsano R.M. Does the promoter constitute a barrier in the horizontal transposon transfer process? Insight from Bari transposons. Genome Biol. Evol. 2017;9(6): 1637-1645.

61. Pavlicev M., Hiratsuka K., Swaggart K.A., Dunn C., Muglia L. Detecting endogenous retrovirus-driven tissue-specific gene transcription. Genome Biol. Evol. 2015;7:1082-1097.

62. Ramsay L., Marchetto M.C., Caron M., Chen S.H., Busche S., Kwan T., Pastinen T., Gage F.H., Bourgue G. Conserved expression of transposon-derived non-coding transcripts in primate stem cells. BMC Genomics. 2017;18:214-226.

63. Roberts A.P., Chandler M., Courvalin P., Guedon G., Mullany P., Pembroke T., Rood J.I., Smith C.J., Summers A.O., Tsuda M., Berg D.E. Revised nomenclature for transposable genetic elements. Plasmid. 2008;60:167-173.

64. Sahebi M., Hanafi M.M., van Wijnen A.J., Rice D., Rafii M.Y., Azizi P., Osman M., Taheri S., Bakar M.F.A., Isa M.N.M., Noor Y.M. Contribution of transposable elements in the plant’s genome. Gene. 2018; 665:155-166.

65. Saze H. Epigenetic regulation of intragenic transposable elements: a two-edged sword. J. Biochem. 2018;164:323-328.

66. Schmitz J., Brosius J. Exonization of transposed elements: a challenge and opportunity for evolution. Biochimie. 2011;93:19281934.

67. Sela N., Kim E., Ast G. The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates. Genome Biol. 2010;11:R59.

68. Sniezewski L., Janik S., Laszkiewicz A., Majkowski M., Kisielow P., Cebrat M. The evolutionary conservation of the bidirectional activity of the NWC gene promoter in jawed vertebrates and the domestication of the RAG transposon. Dev. Comp. Immunol. 2018;81: 105-115.

69. Speiseder T., Nevels M., Dobner T. Determination of the transforming activities of adenovirus oncogenes. Methods Mol. Biol. 2014; 1089:105-115.

70. Strand D.J., McDonald J.F. Copia is transcriptionally responsive to environmental stress. Nucleic Acids Res. 1985;13:4401-4410.

71. Sun C., Feschotte C., Wu Z., Mueller R.L. DNA transposons have colonized the genome of the giant virus Pandoravirus salinus. BMC Biol. 2015;13:38.

72. Sun W., Schen Y.H., Han M.J., Cao Y.F., Zhang Z. An adaptive transposable element insertion in the regulatory region of the EO gene in domesticated silkworm, Bombyx mori. Mol. Biol. Evol. 2014;31: 3302-3313.

73. Suzuki M., Muranaka T. Molecular genetics of plant sterol backbone synthesis. Lipids. 2007;42:47-54.

74. Tajnik M., Vigilante A., Braun S., Hanel H., Luscombe N.M., Ule J., Zarnack K., Konig J. Inergenic Alu exonisation facilitates the evolution of tissue-specific transcript ends. Nucleic Acids Res. 2015;43: 10492-10505.

75. Tarocchi M., Polvani S., Marroncini G., Galli A. Molecular mechanism of hepatitis B virus-induced hepatocarcinogenesis. World J. Gastroenterol. 2014;20(33):11630-11640.

76. Taruscio D., Mantovani A. Factors regulating endogenous retroviral sequences in human and mouse. Cytogenet. Genome Res. 2004;105: 351-362.

77. Todeschini A.L., Morillon A., Springer M., Lesage P. Severe adenine starvation activates Ty1 transcription and retrotransposition in Saccharomyces cerevisiae. Mol. Cell. Biol. 2005;25:7459-7472.

78. Tynan S., Pacia E., Haynes-Johnson D., Lawrence D., D’Andrea M.R., Guo J.Z., Lundeen S., Allan G. The putative tumor suppressor deleted in malignant brain tumors 1 is an estrogen-regulated gene in rodent and primate endometrial epithelium. Endocrinology. 2005;146: 1066-1073.

79. Vasileva L.A., Ratner V.A., Bubenshchikova E.V. Stress induction of retrotransposon transpositions in Drosophila: reality of the phenomenon, characteristic features, and possible role in rapid evolution. Russ. J. Genet. 1997;33(8):918-927.

80. Waddington C.H. Canalization of development and the inheritance of acquired characters. Nature. 1942;150:563-565.

81. Waddington C.H. Canalization of development and genetic assimilation of acquired characters. Nature. 1959;183:2654-2655.

82. Walser J.C., Chen B., Feder M. Heat-shock promoters: targets for evolution by P transposable elements in Drosophila. PLoS Genet. 2006; 2:1541-1555.

83. Wang J., Li X., Wang L. A novel long intergenic noncoding RNA indispensable for the cleavage of mouse two-cell embryos. EMBO Rep. 2016;17:1452-1470.

84. Wheeler B.S. Small RNAs, big impact: small RNA pathways in transposon control and their effect on the host stress response. Chromosome Res. 2013;21:587-600.

85. Wicker T., Sabot F., Hua-Van A., Bennetzen J.L., Capy P., Chalhoub B., Flavel A., Leory P., Morgante M., Panaud O., Paux E., SanMiguel P., Schulman A.H. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007;8:973-982.

86. Yutin N., Shevchenko S., Kapitonov V., Krupovic M., Koonin E.V. A novel group of diverse Polinton-like viruses discovered by metagenome analysis. BMC Biol. 2015;13:95.

87. Zdobnov E.M., Campillos M., Harrington E.D., Torrents D., Bork P. Protein coding potential of retroviruses and other transposable elements in vertebrate genomes. Nucleic Acids Res. 2005;33:946-954.

88. Zhang G., Esteve P., Chin H.G., Terragni J., Dai N., Correa I.R., Jr., Pradhan S. Small RNA-mediated DNA (cytosine-5) methyltransferase 1 inhibition leads to aberrant DNA methylation. Nucleic Acids Res. 2015;43(12):6112-6124.

89. Zhang H., Feschotte C., Han M., Zhang Z. Recurrent horizontal transfers of Chapaev transposons in diverse invertebrate and vertebrate animals. Genome Biol. Evol. 2014;6(6):1375-1386.

90. Zhang Z., Saier M.H., Jr. Transposon-mediated adaptive and directed mutations and their potential evolutionary benefits. J. Mol. Microbiol. Biotechnol. 2012;21(1-2):59-70.

91. Zhuo X., Feschotte C. Cross-species transmission and differential fate of an endogenous retrovirus in three mammal lineages. PLoS Pathog. 2015;11(11):e1005279. DOI 10.1371/journal.ppat.1005279.


Просмотров: 85


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)