The regulatory role of cystatin C in autophagy and neurodegeneration
https://doi.org/10.18699/VJ19.507
Abstract
Autophagy is a dynamic cellular process involved in the turnover of proteins, protein complexes, and organelles through lysosomal degradation. It is particularly important in neurons, which do not have a proliferative option for cellular repair. Autophagy has been shown to be suppressed in the striatum of a transgenic mouse model of Parkinson’s disease. Cystatin C is one of the potent regulators of autophagy. Changes in the expression and secretion of cystatin C in the brain have been shown in amyotrophic lateral sclerosis, Alzheimer’s and Parkinson’s diseases, and in some animal models of neurodegeneration, thus proving a protective function of cystatin C. It has been suggested that cystatin C plays the primary role in amyloidogenesis and shows promise as a therapeutic agent for neurodegenerative diseases (Alzheimer’s and Parkinson’s diseases). Cystatin C colocalizes with the amyloid β-protein in the brain during Alzheimer’s disease. Controlled expression of a cystatin C peptide has been proposed as a new approach to therapy for Alzheimer’s disease. In Parkinson’s disease, serum cystatin C levels can predict disease severity and cognitive dysfunction, although the exact involvement of cystatin C remains unclear. The aim: to study the role of cystatin C in neurodegeneration and evaluate the results in relation to the mechanism of autophagy. In our study on humans, a higher concentration of cystatin C was noted in cerebrospinal fluid than in serum; much lower concentrations were observed in other biological fluids (intraocular fluid, bile, and sweat). In elderly persons (61–80 years old compared to practically healthy people at 40–60 years of age), we revealed increased cystatin C levels both in serum and intraocular fluid. In an experiment on C57Bl/6J mice, cystatin C concentration was significantly higher in brain tissue than in the liver and spleen: an indication of an important function of this cysteine protease inhibitor in the brain. Using a transgenic mouse model of Parkinson’s disease (5 months old), we demonstrated a significant increase in osmotic susceptibility of brain lysosomes, depending on autophagy, while in a murine model of Alzheimer’s disease, this parameter did not differ from that in the appropriate control.
About the Authors
T. A. KorolenkoRussian Federation
Novosibirsk
A. B. Shintyapina
Russian Federation
Novosibirsk
A. B. Pupyshev
Russian Federation
Novosibirsk
A. A. Akopyan
Russian Federation
Novosibirsk
G. S. Russkikh
Russian Federation
Novosibirsk
M. A. Dikovskaya
Russian Federation
Novosibirsk
V. A. Vavilin
Russian Federation
Novosibirsk
E. L Zavjalov
Russian Federation
Novosibirsk
M. A. Tikhonova
Russian Federation
Novosibirsk
T. G. Amstislavskaya
Russian Federation
Novosibirsk
References
1. Bjornstad P., Cherney D.Z., Maahs D.M. Update on estimation of kidney function in diabetic kidney disease. Curr. Diab. Rep. 2015;15(9):57. DOI 10.1007/s11892-015-0633-2.
2. Chen W.W., Cheng X., Zhang X., Zhang Q.S., Sun H.Q., Huang W.J., Xie Z.Y. The expression features of serum cystatin C and homocysteine of Parkinson’s disease with mild cognitive dysfunction. Eur. Rev. Med. Pharmacol. Sci. 2015;19(16):2957-2963.
3. Chen Y., Klionsky D.J. The regulation of autophagy – unanswered questions. J. Cell Sci. 2011;124(Pt.2):161-170.
4. Cheung Z.H., Ip N.Y. Autophagy deregulation in neurodegenerative diseases – recent advances and future perspectives. J. Neurochem. 2011;118(3):317-325. DOI 10.1111/j.1471-4159.2011.07314.x.
5. Choi J.Y., Cho E.J., Lee H.S., Lee J.M., Yoon Y.H., Lee S. Tartary buckwheat improves cognition and memory function in an in vivo amyloid-β-induced Alzheimer model. Food Chem. Toxicol. 2013; 53:105-111. DOI 10.1016/j.fct.2012.11.002.
6. Ciechanover A., Kwon Y.T. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp. Mol. Med. 2015:47:e147.
7. Coria F., Castaño E.M., Frangione B. Brain amyloid in normal aging and cerebral amyloid angiopathy is antigenically related to Alzheimer’s disease beta-protein. Am. J. Pathol. 1987;129(3):422-428.
8. Cuervo A.M., Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell. Res. 2014;24(1):92-104.
9. Dehay B., Bove J., Rodriguez-Muela N., Perier C., Recasens A., Boya P., Vila M. Pathogenic lysosomal depletion in Parkinson’s disease. J. Neurosci. 2010;30(37):12535-12544.
10. Feng Y., Yao Z., Klionsky D.J. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol. 2015;25(6):354-363. DOI 10.1016/j. tcb.2015.02.002.
11. Galluzzi L., Baehrecke E.H., Ballabio A., Boya P., Bravo-San Pedro J.M., Cecconi F., Choi A.M., Chu C.T., Codogno P., Colombo M.I., Cuervo A.M., Debnath J., Deretic V., Dikic I., Eskelinen E.L., Fimia G.M., Fulda S., Gewirtz D.A., Green D.R., Hansen M., Harper J.W., Jäättelä M., Johansen T., Juhasz G., Kimmelman A.C., Kraft C., Ktistakis N.T., Kumar S., Levine B., LopezOtin C., Madeo F., Martens S., Martinez J., Melendez A., Mizushima N., Münz C., Murphy L.O., Penninger J.M., Piacentini M., Reggiori F., Rubinsztein D.C., Ryan K.M., Santambrogio L., Scorrano L., Simon A.K., Simon H.U., Simonsen A., Tavernarakis N., Tooze S.A., Yoshimori T., Yuan J., Yue Z., Zhong Q., Kroemer G. Molecular definitions of autophagy and related processes. EMBO J. 2017a;36(13):1811-1836. DOI 10.15252/embj.201796697.
12. Galluzzi L., Bravo-San Pedro J.M., Levine B., Green D.R., Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 2017b;6(7):487-511. DOI 10.1038/nrd.2017.22.
13. Gammoh N., Fraser J., Puente C., Syred H.M., Kang H., Ozawa T., Lam D., Acosta J.C., Finch A.J., Holland E., Jiang X. Suppression of autophagy impedes glioblastoma development and induces senescence. Autophagy. 2016;12(9):1431-1439. DOI 10.1080/15548627.2016.1190053.
14. Gao L., Jauregui C.E., Teng Y. Targeting autophagy as a strategy for drug discovery and therapeutic modulation. Future Med. Chem. 2017;9(3):335-345. DOI 10.4155/fmc-2016-0210.
15. Gashenko E.A., Lebedeva V.A., Brak I.V., Tsykalenko E.A., Vinokurova G.V., Korolenko T.A. Evaluation of serum procathepsin B, cystatin B and cystatin C as possible biomarkers of ovarian cancer. Int. J. Circumpolar Health. 2013;72:21215. DOI 10.3402/ijch.v72i0.21215.
16. Gauthier A.C., Liu J. Neurodegeneration and neuroprotection in glaucoma. Yale J. Biol. Med. 2016;89(1):73-79.
17. Gauthier S., Kaur G., Mi W., Tizon B., Levy E. Protective mechanisms by cystatin C in neurodegenerative diseases. Front. Biosci. (Schol Ed). 2011;3:541-554.
18. Gomez-Santos C., Ferrer I., Santidrian A.F., Barrachina M., Gil J., Ambrosio S. Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells. J. Neurosci. Res. 2003;73:341-350.
19. Ha J., Kim J. Novel pharmacological modulators of autophagy: an updated patent review (2012–2015). Expert Opin. Ther. Pat. 2016; 26(11):1273-1289.
20. Hara T., Nakamura K., Matsui M., Yamamoto A., Nakahara Y., Suzuki-Migishima R., Yokoyama M., Mishima K., Saito I., Okano H., Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885-889.
21. Harris H., Rubinsztein D.C. Control of autophagy as a therapy for neurodegenerative disease. Nat. Rev. Neurol. 2011;8(2):108-117. DOI 10.1038/nrneurol.2011.200.
22. Hu W.D., Chen J., Mao C.J., Feng P., Yang Y.P., Luo W.F., Liu C.F. Elevated cystatin C levels are associated with cognitive impairment and progression of Parkinson disease. Cogn. Behav. Neurol. 2016;29(3):144-149. DOI 10.1097/WNN.0000000000000100.
23. Huang C.K., Chang Y.T., Amstislavskaya T.G., Tikhonova M.A., Lin C.L., Hung C.S., Lai T.J., Ho Y.J. Synergistic effects of ceftriaxone and erythropoietin on neuronal and behavioral deficits in an MPTP-induced animal model of Parkinson’s disease dementia. Behav. Brain Res. 2015;294:198-207. DOI 10.1016/j.bbr.2015.08.011.
24. Huh C.G., Håkansson K., Nathanson C.M., Thorgeirsson U.P., Jonsson N., Grubb A., Abrahamson M., Karlsson S. Decreased metastatic spread in mice homozygous for a null allele of the cystatin C protease inhibitor gene. Mol. Pathol. 1999;52(6):332-340.
25. Hwang H.Y., Cho S.M., Kwon H.J. Approaches for discovering novel bioactive small molecules targeting autophagy. Expert Opin. Drug Discov. 2017;12(9):909-923. DOI 10.1080/17460441.2017.1349751.
26. Johnston T.P., Korolenko T.A., Bgatova N.P. Statins and Yeast Polysaccharides in the Treatment of Hyperlipidemia and Liver Steatosis, Role of Autophagy. In: Berhardt L.V. (Ed.). Advances in Medicine and Biology. Vol. 110. New York: Nova Science Publ., 2017;31-60. Kaminskyy V., Zhivotovsky B. Proteases in autophagy. Biochim. Biophys. Acta. 2012;1824(1):44-50.
27. Kaur G., Levy E. Cystatin C in Alzheimer’s disease. Front. Mol. Neurosci. 2012;6(5):79. DOI 10.3389/fnmol.2012.00079.
28. Keppler D. Towards novel anti-cancer strategies based on cystatin function. Cancer Lett. 2006;235(2):159-176.
29. Kiriyama Y., Nochi H. The function of autophagy in neurodegenerative diseases. Int. J. Mol. Sci. 2015;16(11):26797-26812. DOI 10.3390/ijms161125990.
30. Korolenko T.A., Cherkanova M.S., Gashenko E.A., Johnston T.P., Bravve I.Yu. Cystatin C, Atherosclerosis and Lipid-Lowering Therapy by Statins. In: Cohen J.B., Ryseck L.P. (Eds.). Cystatins, Protease Inhibitors, Biomarkers and Immunomodulators. Nova Science Publ., USA, 2011;187-204.
31. Korolenko T.A., Pisareva E.E., Filyushina E.E., Johnston T.P., Machova E. Serum cystatin C and chitotriosidase in acute P-407 induced dyslipidemia: can they serve as potential early biomarkers for atherosclerosis? Exp. Toxicol. Pathol. 2015;67(9):459-466. DOI 10.1016/j.etp.2015.06.003.
32. Korolenko T.A., Tuzikov F.V., Cherkanova M.S., Johnston T.P., Tuzikova N.A., Loginova V.M., Filjushina E.E., Kaledin V.I. Influence of atorvastatin and carboxymethylated glucan on the serum lipoprotein profile and MMP activity of mice with lipemia induced by poloxamer 407. Can. J. Physiol. Pharmacol. 2012;90(2):141-153. DOI 10.1139/y11-118.
33. Kovács T., Billes V., Komlós M., Hotzi B., Manzéger A., Tarnóci A., Papp D., Szikszai F., Szinyákovics J., Rácz Á., Noszál B., Veszelka S., Walter F.R., Deli M.A., Hackler L., Jr, Alfoldi R., Huzian O., Puskas L.G., Liliom H., Tárnok K., Schlett K., Borsy A., Welker E., Kovács A.L., Pádár Z., Erdős A., Legradi A., Bjelik A., Gulya K., Gulyás B., Vellai T. The small molecule AUTEN-99 (autophagy enhancer-99) prevents the progression of neurodegenerative symptoms. Sci. Rep. 2017;7:42014. DOI 10.1038/srep42014.
34. Lee D.C., Womble T.A., Mason C.W., Jackson I.M., Lamango N.S., Severs W.B., Palm D.E. 6-Hydroxydopamine induces cystatin C-mediated cysteine protease suppression and cathepsin D activation. Neurochem. Int. 2007;50(4):607-618.
35. Lee J.A. Autophagy in neurodegeneration: two sides of the same coin. BMB Rep. 2009;42(6):324-330.
36. Li W., Sultana N., Siraj N., Ward L.J., Pawlik M., Levy E., Jovinge S., Bengtsson E., Yuan X.-M. Autophagy dysfunction and regulatory cystatin C in macrophage death of atherosclerosis. J. Cell. Mol. Med. 2016;20(9):1664-1672.
37. Ling D., Salvaterra P.M. A central role for autophagy in Alzheimer-type neurodegeneration. Autophagy. 2009;5(5):738-740.
38. Liu Y., Cai H., Wang Z., Li J., Wang K., Yu Z., Chen G. Induction of autophagy by cystatin C: a potential mechanism for prevention of cerebral vasospasm after experimental subarachnoid hemorrhage. Eur. J. Med. Res. 2013;18:21. DOI 10.1186/2047-783X-18-21.
39. Luo J. Autophagy and ethanol neurotoxicity. Autophagy. 2014;10(12): 2099-2108. DOI 10.4161/15548627.2014.981916.
40. Maetzler W., Schmid B., Synofzik M., Schulte C., Riester K., Huber H., Brockmann K., Gasser T., Berg D., Melms A. The CST3 BB genotype and low cystatin C cerebrospinal fluid levels are associated with dementia in Lewy body disease. J. Alzheimers Dis. 2010;19(3):937942. DOI 10.3233/JAD-2010-1289.
41. Malagelada C., Jin Z.H., Jackson-Lewis V., Przedborski S., Greene L.A. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease. J. Neurosci. 2010;30(3):1166-1175. DOI 10.1523/JNEUROSCI.3944-09.2010.
42. Martini-Stoica H., Xu Y., Ballabio A., Zheng H. The autophagy-lysosomal pathway in neurodegeneration: a TFEB perspective. Trends Neurosci. 2016;39(4):221-234. DOI 10.1016/j.tins.2016.02.002.
43. Mathews P.M., Levy E. Cystatin C in aging and in Alzheimer’s disease. Ageing Res. Rev. 2016;32:38-50. DOI 10.1016/j.arr.2016.06.003.
44. Maxfield F. Role of endosomes and lysosomes in human disease. Cold Spring Harb. Perspect. Biol. 2014;6(5):a016931. DOI 10.1101/cshperspect.a016931.
45. Mi W., Pawlik M., Sastre M., Jung S.S., Radvinsky D.S., Klein A.M., Sommer J., Schmidt S.D., Nixon R.A., Mathews P.M., Levy E. Cystatin C inhibits amyloid-beta deposition in Alzheimer’s disease mouse models. Nat. Genet. 2007;39(12):1440-1442.
46. Nalivaeva N.N., Turner A.J. Role of ageing and oxidative stress in regulation of amyloid-degrading enzymes and development of neurodegeneration. Curr. Aging Sci. 2017;10(1):32-40.
47. Park S.H., Kim J.H., Bae S.S., Hong K.W., Lee D.S., Leem J.Y., Choi B.T., Shin H.K. Protective effect of the phosphodiesterase III inhibitor cilostazol on amyloid β-induced cognitive deficits associated with decreased amyloid β accumulation. Biochem. Biophys. Res. Commun. 2011;408(4):602-608. DOI 10.1016/j.bbrc.2011.04.068.
48. Poteryaeva O.N., Falameyeva O.V., Korolenko T.A., Kaledin V.I., Djanayeva S.J., Nowicky J.W., Sandula J. Cysteine proteinase inhibitor level in tumor and normal tissues in control and cured mice. Drugs Exp. Clin. Res. 2000;26(5-6):301-306.
49. Přikrylová Vranová H., Mareš J., Nevrlý M., Stejskal D., Zapletalová J., Hluštík P., Kaňovský P. CSF markers of neurodegeneration in Parkinson’s disease. J. Neural Transm. (Vienna). 2010;117(10):11771181. DOI 10.1007/s00702-010-0462-z.
50. Pupyshev A.B., Gutina E.M., Fedina R.G., Michurina S.V., Shurlygina A.V., Verbitskaya L.V. Effect of benz(a)pyrene and constant light exposure on rat liver lysosomes and biliary excretion of lysosomal enzymes. Bull. Exp. Biol. Med. 2005;139(1):34-37.
51. Pupyshev A.B., Korolenko T.A., Akopyan A.A., Amstislavskaya T.G., Tikhonova M.A. Suppression of autophagy in the brain of transgenic mice with overexpression of А53Т-mutant α-synuclein as an early event at synucleinopathy progression. Neurosci. Lett. 2018;672:140144. DOI 10.1016/j.neulet.2017.12.001.
52. Son J.H., Shim J.H., Kim K.-H., Ha J.-Y., Han J.Y. Neuronal autophagy and neurodegenerative diseases. Exp. Molec. Med. 2012;44(2): 89-98.
53. Stoka V., Turk B., Turk V. Lysosomal cysteine proteases: structural features and their role in apoptosis. IUBMB Life. 2005;57(4-5): 347-353.
54. Sundelöf J., Arnlöv J., Ingelsson E., Sundström J., Basu S., Zethelius B., Larsson A., Irizarry M.C., Giedraitis V., Rönnemaa E., Degerman-Gunnarsson M., Hyman B.T., Basun H., Kilander L., Lannfelt L. Serum cystatin C and the risk of Alzheimer disease in elderly men. Neurology. 2008;71(14):1072-1079. DOI 10.1212/01.wnl.0000326894.40353.93.
55. Svechnikova I.G., Korolenko T.A., Stashko Ju.F., Kaledin V.I., Nikolin V.P., Nowicky J.W. The influence of Ukrain on the growth of HA-1 tumor in mice: the role of cysteine proteinases as markers of tumor malignancy. Drugs Exp. Clin. Res. 1998;24(5-6):261-269.
56. Tikhonova M.A., Ho S.C., Akopyan A.A., Kolosova N.G., Weng J.C., Meng W.Y., Lin C.L., Amstislavskaya T.G., Ho Y.J. Neuroprotective effects of ceftriaxone treatment on cognitive and neuronal deficits in a rat model of accelerated senescence. Behav. Brain Res. 2017; 330:8-16. DOI 10.1016/j.bbr.2017.05.002.
57. Tizon B., Ribe E.M., Mi W., Troy C.M., Levy E. Cystatin C protects neuronal cells from amyloid-beta-induced toxicity. J. Alzheimers Dis. 2010a;19(3):885-894. DOI 10.3233/JAD-2010-1291.
58. Tizon B., Sahoo S., Yu H., Gauthier S., Kumar A.R., Mohan P., Figliola M., Pawlik M., Grubb A., Uchiyama Y., Bandyopadhyay U., Cuervo A.M., Nixon R.A., Levy E. Induction of autophagy by cystatin C: a mechanism that protects murine primary cortical neurons and neuronal cell lines. PLoS One. 2010b;5(3):e9819. DOI 10.1371/journal.pone.0009819.
59. Torra A., Parent A., Cuadros T., Rodríguez-Galván B., Ruiz-Bronchal E., Ballabio A., Bortolozzi A., Vila M., Bové J. Overexpression of TFEB drives a pleiotropic neurotrophic effect and prevents Parkinson’s disease-related neurodegeneration. Mol. Ther. 2018;26(6): 1552-1567. DOI 10.1016/j.ymthe.2018.02.022.
60. Viscomi M.T., D’Amelio M. The “Janus-faced role” of autophagy in neuronal sickness: focus on neurodegeneration. Mol. Neurobiol. 2012;46(2):513-521. DOI 10.1007/s12035-012-8296-3.
61. Wang D., Hiesinger P.R. Autophagy, neuron-specific degradation and neurodegeneration. Autophagy. 2012;8(4):711-713. DOI 10.4161/auto.19660.
62. Wang R., Chen Z., Fu Y., Wei X., Liao J., Liu X., He B., Xu Y., Zou J., Yang X., Weng R., Tan S., McElroy C., Jin K., Wang Q. Plasma cystatin C and high-density lipoprotein are important biomarkers of Alzheimer’s disease and vascular dementia: a cross-sectional study. Front. Aging Neurosci. 2017;9:26. DOI 10.3389/fnagi.2017.00026.
63. Watanabe S., Komine O., Endo F., Wakasugi K., Yamanaka K. Intracerebroventricular administration of Cystatin C ameliorates disease in SOD1-linked amyotrophic lateral sclerosis mice. J. Neurochem. 2018;145(1):80-89. DOI 10.1111/jnc.14285.
64. Weng J.C., Tikhonova M.A., Chen J.H., Shen M.S., Meng W.Y., Chang Y.T., Chen K.H., Liang K.C., Hung C.S., Amstislavskaya T.G., Ho Y.J. Ceftriaxone prevents the neurodegeneration and decreased neurogenesis seen in a Parkinson’s disease rat model: an immunohistochemical and MRI study. Behav. Brain Res. 2016;305: 126-139. DOI 10.1016/j.bbr.2016.02.034.
65. Wu C.F., Yang J.Y., Wang F., Wang X.-X. Resveratrol: botanical origin, pharmacological activity and applications. Chin. J. Nat. Med. 2013; 11(1):1-15.
66. Xiong K.P., Dai Y.P., Chen J., Xu J.M., Wang Y., Feng P., You S.J., Liu C.F. Increased serum cystatin C in early Parkinson’s disease with objective sleep disturbances. Chin. Med. J. (Engl). 2018;131(8):907911. DOI 10.4103/0366-6999.229902.
67. Xu L., Sheng J., Tang Z., Wu X., Yu Y., Guo H., Shen Y., Zhou C., Paraoan L., Zhou J. Cystatin C prevents degeneration of rat nigral dopaminergic neurons: in vitro and in vivo studies. Neurobiol. Dis. 2005;18:152-165.
68. Xu Y., Ding Y., Li X., Wu X. Cystatin C is a disease-associated protein subject to multiple regulation. Immunol. Cell Biol. 2015;93(5):442451. DOI 10.1038/icb.2014.121.
69. Xu Y., Schnorrer P., Proietto A., Kowalski G., Febbraio M.A., AchaOrbea H., Dickins R.A., Villadangos J.A. IL-10 controls cystatin C synthesis and blood concentration in response to inflammation through regulation of IFN regulatory factor 8 expression. J. Immunol. 2011;186(6):3666-3673. DOI 10.4049/jimmunol.1001934.
70. Yamamoto-Watanabe Y., Watanabe M., Jackson M., Akimoto H., Sugimoto K., Yasujima M., Wakasaya Y., Matsubara E., Kawarabayashi T., Harigaya Y., Lyndon A.R., Shoji M. Quantification of cystatin C in cerebrospinal fluid from various neurological disorders and correlation with G73A polymorphism in CST3. Brain Res. 2010;1361:140-145. DOI 10.1016/j.brainres.2010.09.033.
71. Zerovnik E. The emerging role of cystatins in Alzheimer’s disease. Bioessays. 2009;31(6):597-599. DOI 10.1002/bies.200900012.
72. Zhai J.L., Ge N., Zhen Y., Zhao Q., Liu C. Corticosteroids significantly increase serum cystatin C concentration without affecting renal function in symptomatic heart failure. Clin. Lab. 2016;62(1-2):203-207. Zhong X.M., Hou L., Luo X.N., Shi H.S., Hu G.Y., He H.B., Chen X.R.,
73. Zheng D., Zhang Y.F., Tan Y., Liu X.J., Mu N., Chen J.P., Ning Y.P. Alterations of CSF cystatin C levels and their correlations with CSF Αβ40 and Αβ42 levels in patients with Alzheimer’s disease, dementia with Lewy bodies and the atrophic form of general paresis. PLoS One. 2013;8(1):e55328. DOI 10.1371/journal.pone.0055328.
74. Zou J., Chen Z., Wei X., Chen Z., Fu Y., Yang X., Chen D., Wang R., Jenner P., Lu J.H., Li M., Zhang Z., Tang B., Jin K., Wang Q. Cystatin C as a potential therapeutic mediator against Parkinson’s disease via VEGF-induced angiogenesis and enhanced neuronal autophagy in neurovascular units. Cell Death Dis. 2017;8(6):e2854. DOI 10.1038/cddis.2017.240.