Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Immunogenicity of recombinant fragment of orthopoxvirus p35 protein in mice

https://doi.org/10.18699/VJ19.508

Abstract

Despite the elimination of smallpox, orthopoxviruses continue to be a source of biological danger for humans, as cowpox and monkey pox viruses circulate in nature and the last virus can cause both sporadic cases of human diseases and outbreaks of smallpox-like infection. In addition, periodic vaccination is necessary for representatives of some professions (scientists studying pathogenic orthopoxviruses, medical personnel, etc.). Vaccination against smallpox virus with live vaccinia virus, which was widely used during the elimination of smallpox, induces the formation of long-term immunity in vaccinated people. However, providing a high level of protection, the vaccination is often accompanied by serious post-vaccination complications, the probability of which is particularly great for individuals with compromised immunity. In this regard, the development of preparations for the prevention and treatment of infections caused by orthopoxviruses remains important today. The aim of this study was to assess the immunogenicity in the mouse model of recombinant protein р35Δ12, designed previously on the base of the cowpox virus protein p35. It was previously shown that the protein р35Δ12 was recognized by fully human neutralizing anti-orthopoxviral antibody with high affinity. In this work, recombinant protein р35Δ12 produced in E. coli cells XL1-blue and purified by chromatography was used for two-time immunization of mice. Two weeks after the second immunization, blood samples were taken from mice and serum antibodies were analyzed. It was shown by ELISA and Western-blot analysis that immunized mice sera contained IgG antibodies specific to recombinant protein р35Δ12. Confocal microscopy showed that antibodies induced by the р35Δ12 protein were able to recognize Vero E6 cells infected with the LIVP-GFP vaccinia virus. In addition, the antibodies in the serum of immunized mice were able to neutralize the infectivity of the vaccinia virus LIVP-GFP in the plaque reduction neutralization test in vitro. These experiments have demonstrated promising properties of the р35Δ12 protein if it were used as a component of vaccine for prophylaxis of orthopoxvirus infections.

About the Authors

Ya. A. Khlusevich
Institute of Сhemical Biology аnd Fundamental Medicine, SB RAS
Russian Federation
Novosibirsk


A. L. Matveev
Institute of Сhemical Biology аnd Fundamental Medicine, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


E. P. Goncharova
Institute of Сhemical Biology аnd Fundamental Medicine, SB RAS
Russian Federation
Novosibirsk


I. K. Baykov
Institute of Сhemical Biology аnd Fundamental Medicine, SB RAS
Russian Federation
Novosibirsk


N. V. Tikunova
Institute of Сhemical Biology аnd Fundamental Medicine, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


References

1. Dubrovskaya V.V., Ulitin A.B., Laman A.G., Gileva I.P., Bormotov N.I., Il’ichev A.A., Brovko F.A., Schelkunov S.N., Belanov E.F., Tikunova N.V. Construction of combinatorial immune library of human single-chain antibodies to orthopoxviruses and selection of antibodies to recombinant prA30L of the variola virus. Mol. Biol. 2007;41(1):157-167. DOI 10.1134/S0026893307010207.

2. Petrov I.S., Goncharova E.P., Kolosova I.V., Pozdnyakov S.G., Shchelkunov S.N., Zenkova M.A., Vlasov V.V. Antitumor effect of the LIVP-GFP recombinant vaccinia virus. Doklady Biological Sciences. 2013;451:248-252. DOI 10.1134/S0012496613040133.

3. Bazzill J.D., Ochyl L.J., Giang E., Castillo S., Law M., Moon J.J. Interrogation of antigen display on individual vaccine nanoparticles for achieving neutralizing antibody responses against hepatitis C virus. Nano Lett. 2018;18:7832-7838. DOI 10.1021/acs.nanolett.8b03601.

4. Bhanuprakash V., Venkatesan G., Balamurugan V., Hosamani M., Yogisharadhya R., Gandhale P., Reddy K.V., Damle A.S., Kher H.N., Chandel B.S., Chauhan H.C., Singh R.K. Zoonotic infections of buffalopox in India. Zoonoses Public Health. 2010;57(7-8):e149-155.

5. Buller R.M., Potter M., Wallace G.D. Variable resistance to ectromelia (mousepox) virus among genera of Mus. Curr. Top Microbiol. Immunol. 1986;127:319-322.

6. Campe H., Zimmermann P., Glos K., Bayer M., Bergemann H., Dreweck C., Graf P., Weber B.K., Meyer H., Büttner M., Busch U., Sing A. Cowpox virus transmission from pet rats to humans, Germany. Emerg. Infect. Dis. 2009;15(5):777-780.

7. Carletti F., Bordi L., Castilletti C., Di Caro A., Falasca L., Gioia C., Ippolito G., Zaniratti S., Beltrame A., Viale P., Capobianchi M.R. Cat-to-human orthopoxvirus transmission, northeastern Italy. Emerg. Infect. Dis. 2009;15(3):499-500.

8. Crotty S., Felgner P., Davies H., Glidewell J., Villarreal L., Ahmed R. Cutting edge: long-term B cell memory in humans after smallpox vaccination. J. Immunol. 2003;171:4969-4973.

9. Davies D.H., McCausland M.M., Valdez С., Huynh D., Hernandez J.E., Mu Y., Hirst S., Villarreal L., Felgner P.L., Crotty S. Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice. J. Virol. 2005;79:11724-11733.

10. Di Giulio D.B., Eckburg P.B. Human monkeypox: an emerging zoonosis. Lancet Infect. Dis. 2004;4(1):15-25.

11. Ducournau C., Ferrier-Rembert A., Ferraris O., Joffre A., Favier A.L., Flusin O., Van Cauteren D., Kecir K., Auburtin B., Védy S., Bessaud M., Peyrefitte C.N. Concomitant human infections with 2 cowpox virus strains in related cases, France, 2011. Emerg. Infect. Dis. 2013;19(12):1996-1999.

12. Fulginiti V.A., Papier A., Lane J.M., Neff J.M., Henderson D.A. Smallpox vaccination: a review, part II. Adverse events. Clin. Infect. Dis. 2003;37:251-271.

13. Hobi S., Mueller R.S., Hill M., Nitsche A., Löscher T., Guggemos W., Ständer S., Rjosk-Dendorfer D., Wollenberg A. Neurogenic inflammation and colliquative lymphadenitis with persistent orthopox virus DNA detection in a human case of cowpox virus infection transmitted by a domestic cat. Br. J. Dermatol. 2015;173(2):535-539.

14. Jezek Z., Marennikova S.S., Mutumbo M., Nakano J.H., Paluku K.M., Szczeniowski M. Human monkeypox: a study of 2,510 contacts of 214 patients. J. Infect. Dis. 1986;154(4):551-555.

15. Jones-Trower A., Garcia A., Meseda C.A., He Y., Weiss C., Kumar A., Weir J.P., Merchlinsky M. Identification and preliminary characterization of vaccinia virus (Dryvax) antigens recognized by vaccinia immune globulin. Virology. 2005;343:128-140.

16. Kawakami Y., Tomimori Y., Yumoto K., Hasegawa S., Ando T., Tagaya Y., Crotty S., Kawakami T. Inhibition of NK cell activity by IL-17 allows vaccinia virus to induce severe skin lesions in a mouse model of eczema vaccinatum. J. Exp. Med. 2009;206(6):1219-1225.

17. Khlusevich Y., Matveev A., Baykov I., Bulychev L., Bormotov N., Ilyichev I., Shevelev G., Morozova V., Pyshnyi D., Tikunova N. Phage display antibodies against ectromelia virus that neutralize variola virus: selection and implementation for p35 neutralizing epitope mapping. Antiviral Res. 2018;152:18-25. DOI 10.1016/j.antiviral.2018.02.006.

18. Kidokoro M., Tashiro M., Shida H. Genetically stable and fully effective smallpox vaccine strain constructed from highly attenuated vaccinia LC16m8. Proc. Natl. Acad. Sci. USA. 2005;102(11):4152-4157.

19. Kinnunen P.M., Holopainen J.M., Hemmilä H., Piiparinen H., Sironen T., Kivelä T., Virtanen J., Niemimaa J., Nikkari S., Järvinen A., Vapalahti O. Severe ocular cowpox in a human, Finland. Emerg. Infect. Dis. 2015;21(12):2261-2263.

20. Lin C.L., Chung C.S., Heine H.G., Chang W. Vaccinia virus envelope H3L protein binds to cell surface heparan sulfate and is important for intracellular mature virion morphogenesis and virus infection in vitro and in vivo. J. Virol. 2000;74:3353-3365.

21. MacNeil A., Reynolds M.G., Carroll D.S., Karem K., Braden Z., Lash R., Moundeli A., Mombouli J.V., Jumaan A.O., Schmid D.S., Damon I.K. Monkeypox or мaricella? Lessons from a rash outbreak investigation in the Republic of the Congo. Am. J. Trop. Med. Hyg. 2009;80(4):503-507.

22. McCollum A.M., Damon I.K. Human monkeypox. Clin. Infect. Dis. 2014;58(2):260-267.

23. Medina L.O., To A., Lieberman M.M., Wong T., Namekar M., Nakano E., Andersen H., Yalley-Ogunro J., Greenhouse J., Higgs S., Huang Y.S., Vanlandingham D.L., Horton J.S., Clements D.E., Lehrer A.T. A recombinant subunit based Zika virus vaccine is efficacious in non-human primates. Front. Immunol. 2018;9:2464. DOI 10.3389/fimmu.2018.02464.

24. Meyer H., Sutter G., Mayr A. Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. J. Gen. Virol. 1991;72:1031-1038.

25. Moss B. Poxviridae. In: Knipe D.M., Howley P.M. (Eds.). Fields Virology. Six ed. Lippincott Williams & Wilkins, Philadelphia, PA, 2013; 2129-2159.

26. Nakazawa Y., Mauldin M.R., Emerson G.L., Reynolds M.G., Lash R.R., Gao J., Zhao H., Li Y., Muyembe J.J., Kingebeni P.M., Wemakoy O., Malekani J., Karem K.L., Damon I.K., Carroll D.S. A phylogeographic investigation of African monkeypox. Viruses. 2015;7(4):2168-2184.

27. Ninove L., Domart Y., Vervel C., Voinot C., Salez N., Raoult D., Meyer H., Capek I., Zandotti C., Charrel R.N. Cowpox virus transmission from pet rats to humans, France. Emerg. Infect. Dis. 2009; 15(5):781-784.

28. Olson V., Shchelkunov S. Are we prepared in case of a possible smallpox-like disease emergence? Viruses. 2017;9(9):242.

29. Petersen B.W., Harms T.J., Reynolds M.G., Harrison L.H. Use of vaccinia virus smallpox vaccine in laboratory and health care personnel at risk for occupational exposure to orthopoxviruses – recommendations of the Advisory Committee on Immunization Practices (ACIP), 2015. Morb. Mortal. Wkly Rep. (MMWR). 2016;65(10):257-262. DOI 10.15585/mmwr.mm6510a2.

30. Pütz M.M., Midley C.M., Law M., Smith G.L. Quantification of antibody responses against multiple antigens of the two infectious of vaccinia virus provides a benchmark for smallpox vaccinations. Nat. Med. 2006;12(11):1310-1315.

31. Reynolds M.G., Emerson G.L., Pukuta E., Karhemere S., Muyembe J.J., Bikindou A., McCollum A.M., Moses C., Wilkins K., Zhao H., Damon I.K., Karem K.L., Li Y., Carroll D.S., Mombouli J.V. Detection of human monkeypox in the Republic of the Congo following intensive community education. Am. J. Trop. Med. Hyg. 2013;88(5): 982-985.

32. Rimoin A.W., Mulembakani P.M., Johnston S.C., Lloyd Smith J.O., Kisalu N.K., Kinkela T.L., Blumberg S., Thomassen H.A., Pike B.L., Fair J.N., Wolfe N.D., Shongo R.L., Graham B.S., Formenty P., Okitolonda E., Hensley L.E., Meyer H., Wright L.L., Muyembe J.J. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc. Natl. Acad. Sci. USA. 2010;107(37):16262-16267.

33. Riyesh T., Karuppusamy S., Bera B.C., Barua S., Virmani N., Yadav S., Vaid R.K., Anand T., Bansal M., Malik P., Pahuja I., Singh R.K. Laboratory-acquired buffalopox virus infection, India. Emerg. Infect. Dis. 2014;20(2):324-326.

34. Shchelkunov S.N., Marennikova S.S., Moyer R.W. Orthopoxviruses Pathogenic for Humans. Berlin; Heidelberg; New York: Springer, 2005.

35. Shchelkunova G.A., Shchelkunov S.N. 40 years without smallpox. Acta Naturae. 2017;9(4):4-12.

36. Shi D.Y., Chen B.Y., Mao Y.Y., Zhou G., Lu J.S., Yu Y.Z., Zhou X.W., Sun Z.W. Development and evaluation of candidate subunit vaccine against botulinum neurotoxin serotype B. Hum. Vaccin. Immunother. Publ. online 2018. Publ. 2019;15(3):755-760. DOI 10.1080/21645515.2018.1547613.

37. Silva-Fernandes A.T., Travassos C.E., Ferreira J.M., Abrahão J.S., Rocha E.S., Viana-Ferreira F., dos Santos J.R., Bonjardim C.A., Ferreira P.C., Kroon E.G. Natural human infections with Vaccinia virus during bovine vaccinia outbreaks. J. Clin. Virol. 2009;44(4):308-313. Smith K.A. Smallpox: can we still learn from the journey to eradication? Indian J. Med. Res. 2013;137(5):895-899.

38. Trindade G.S., Guedes M.I., Drumond B.P., Mota B.E., Abrahão J.S., Lobato Z.I., Gomes J.A., Corrêa-Oliveira R., Nogueira M.L., Kroon E.G., da Fonseca F.G. Zoonotic vaccinia virus: clinical and immunological characteristics in a naturally infected patient. Clin. Infect. Dis. 2009;48(3):e37-40.

39. Wang Y.B., Wang L.P., Li P. Perspectives on novel vaccine development. Pol. J. Vet. Sci. 2018;21(3):643-649.

40. Zafar A., Swanepoel R., Hewson R., Nizam M., Ahmed A., Husain A., Grobbelaar A., Bewley K., Mioulet V., Dowsett B., Easterbrook L., Hasan R. Nosocomial buffalopoxvirus infection, Karachi, Pakistan. Emerg. Infect. Dis. 2007;13(6):902-904.


Review

Views: 799


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)