Transcription factors MhyFIL1 and MhyFIL3 (Monotropa hypopitys) determine the asymmetric development of above-ground lateral organs in plants
https://doi.org/10.18699/VJ19.509
Abstract
It is believed that the complete mycoheterotroph pinesap Monotropa hypopitys adaptively evolved from a photosynthetic mycorrhizal ancestor, which had lost its photosynthetic apparatus and vegetative organs (stem and leaves). The aerial part of the plant is a reproductive axis with sterile bracts and inflorescence with a flower type canonical for higher plants. The origin of leaves and leaf-like lateral organs is associated, among other factors, with the evolution of the YABBY genes, which are divided into“vegetative” and evolutionarily recent“reproductive” genes, with regard to their expression profiles. The study of the vegetative YABBY genes in pinesap will determine whether their functions (identification of cell identity on the abaxial surface of the lateral organs) are preserved in the leafless plant. In this study, the structural and phylogenetic analysis of the pinesap vegetative genes MhyFIL1 and MhyFIL3 is performed, the main conserved domains and motifs of the encoded proteins are characterized, and it is confirmed that the genes belong to the vegetative clade YABBY3/FIL. The effect of heterologous ectopic expression of the MhyFIL1 and MhyFIL3 genes on the phenotype of transgenic tobacco Nicotiana tabacum is evaluated. The leaves formed by both types of plants, 35S::MhyFIL1 and 35S::MhyFIL3, were narrower than in control plants and were twisted due to the changed identity of adaxial surface cells. Also, changes in the architecture of the aerial part and the root system of transgenic plants, including aberrant phyllotaxis and arrest of the shoot and root apical meristem development, were noted. Some of the 35S::MhyFIL1 and 35S::MhyFIL3 plants died as early as the stage of the formation of the first leaves, others did not bloom, and still others had a greatly prolonged vegetation period and formed fewer flowers than normal ones. The flowers had no visible differences from the control except for fragile pedicles. Thus, the absence of structural changes from the M. hypopitys flower in comparison to autotrophic species and the effect of MhyFIL1/3 heterologous expression on the development of tobacco plants indicate the preservation of the functions of the vegetative YABBY genes by the MhyFIL1/3 genes in pinesap. Moreover, the activity of YABBY transcription factors of the FIL clade in M. hypopitys is not directly related to the loss of the ability of pinesap to form leaves during the evolutionary transition from autotrophic nutrition to heterotrophy.
Keywords
About the Authors
A. V. ShchennikovaRussian Federation
Moscow
A. M. Kamionskaya
Russian Federation
Moscow
A. V. Nezhdanova
Russian Federation
Moscow
K. S. Gavrilova
Russian Federation
Moscow
M. A. Filyushin
Russian Federation
Moscow
E. Z. Kochieva
Russian Federation
Moscow
K. G. Skryabin
Russian Federation
Moscow
References
1. Bailey T.L., Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1994;2:28-36.
2. Bartholmes C., Hidalgo O., Gleissberg S. Evolution of the YABBY gene family with emphasis on the basal eudicot Eschscholzia californica (Papaveraceae). Plant Biol. (Stuttg.). 2012;14(1):11-23. DOI 10.1111/j.1438-8677.2011.00486.x.
3. Beerling D.J., Fleming A.J. Zimmermann’s telome theory of megaphyll leaf evolution: a molecular and cellular critique. Curr. Opin. Plant Biol. 2007;10(1):4-12. DOI 10.1016/j.pbi.2006.11.006.
4. Beletsky A.V., Filyushin M.A., Gruzdev E.V., Mazur A.M., Prokhortchouk E.B., Kochieva E.Z., Mardanov A.V., Ravin N.V., Skryabin K.G. De novo transcriptome assembly of the mycoheterotrophic plant Monotropa hypopitys. Genom Data. 2016;11:60-61. DOI 10.1016/j.gdata.2016.11.020.
5. Bidartondo M.I. The evolutionary ecology of myco-heterotrophy. New Phytol. 2005;167(2):335-352. DOI 10.1111/j.1469-8137.2005. 01429.x.
6. Boter M., Golz J.F., Giménez-Ibañez S., Fernandez-Barbero G., Franco-Zorrilla J.M., Solano R. FILAMENTOUS FLOWER is a direct target of jaz3 and modulates responses to jasmonate. Plant Cell. 2015;27(11):3160-3174. DOI 10.1105/tpc.15.00220.
7. Bowman J.L. The YABBY gene family and abaxial cell fate. Curr. Opin. Plant Biol. 2000;3(1):17-22. DOI 10.1016/S1369-5266(99)00035-7.
8. Bowman J.L., Eshed Y., Baum S.F. Establishment of polarity in angiosperm lateral organs. Trends Genet. 2002;18(3):134-141. DOI 10.1016/S0168-9525(01)02601-4.
9. Buchanan-Wollaston V., Page T., Harrison E., Breeze E., Lim P.O., Nam H.G., Lin J.F., Wu S.H., Swidzinski J., Ishizaki K., Leaver C.J. Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J. 2005;42(4):567-585. DOI 10.1111/j.1365-313X.2005.02399.x.
10. Chu H., Liang W., Li J., Hong F., Wu Y., Wang L., Wang J., Wu P., Liu C., Zhang Q., Xu J., Zhang D. A CLE-WOX signalling module regulates root meristem maintenance and vascular tissue development in rice. J. Exp. Bot. 2013;64(17):5359-5369. DOI 10.1093/jxb/ert301.
11. Cronk Q.C.B. Plant evolution and development in a post-genomic context. Nat. Rev. Genet. 2001;2(8):607-619. DOI 10.1038/35084556.
12. Eckardt N.A. YABBY genes and the development and origin of seed plant leaves. Plant Cell. 2010;22(7):2103. DOI 10.1105/tpc.110.220710.
13. Fiers M., Golemiec E., Xu J., van der Geest L., Heidstra R., Stiekema W., Liu C.M. The 14-amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway. Plant Cell. 2005;17(9):2542-2553. DOI 10.1105/tpc.105.034009.
14. Finet C., Floyd S.K., Conway S.J., Zhong B., Scutt C.P., Bowman J.L. Evolution of the YABBY gene family in seed plants. Evol. Dev. 2016;18(2):116-126. DOI 10.1111/ede.12173.
15. Goldshmidt A., Alvarez J.P., Bowman J.L., Eshed Y. Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems. Plant Cell. 2008; 20(5):1217-1230. DOI 10.1105/tpc.107.057877.
16. Goloveshkina E.N., Shchennikova A.V., Kamionskaya A.M., Skryabin K.G., Shulga O.A. Influence of ectopic expression of Asteraceae MADS box genes on plant ontogeny in tobacco. Plant Cell Tiss. Organ Cult. 2012;109(1):61-71. DOI 10.1007/s11240-011-0074-9.
17. Graham S.W.G., Lam V.K.Y., Merckx V.S.F.T. Plastomes on the edge: the evolutionary breakdown of mycoheterotrophic plastid genomes. New Phytologist. 2017;214:48-55. DOI 10.1111/nph.14398.
18. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947-2948. DOI 10.1093/bioinformatics/btm404.
19. Leake J.R. The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol. 1994;127:171-216. DOI 10.1111/j.1469-8137.1994.tb04272.x.
20. Mathews S., Kramer E.M. The evolution of reproductive structures in seed plants: a re-examination based on insights from developmental genetics. New Phytol. 2012;194(4):910-923. DOI 10.1111/j.14698137.2012.04091.x.
21. McConnell J.R., Barton M.K. Leaf polarity and meristem formation in Arabidopsis. Development. 1998;125(15):2935-2942.
22. Merckx V.S.F.T., Freudenstein J.V., Kissling J., Christenhusz M.J.M., Stotler R.E., Crandall-Stotler B., Wickett N., Rudall P.J., Maasvan de Kamer H., Maas P.J.M. Taxonomy and сlassification. Ed. V.S.F.T. Merckx. Mycoheterotrophy: The Biology of Plants Living on Fungi. New York: Springer Science+Buisness Media, 2013; 73-83. DOI 10.1007/978-1-4614-5209-6_1.
23. Ravin N.V., Gruzdev E.V., Beletsky A.V., Mazur A.M., Prokhortchouk E.B., Filyushin M.A., Kochieva E.Z., Kadnikov V.V., Mardanov A.V., Skryabin K.G. The loss of photosynthetic pathways in the plastid and nuclear genomes of the non-photosynthetic mycoheterotrophic eudicot Monotropa hypopitys. BMC Plant Biol. 2016; 16(Suppl. 3):238. DOI 10.1186/s12870-016-0929-7.
24. Sarojam R., Sappl P.G., Goldshmidt A., Efroni I., Floyd S.K., Eshed Y., Bowman J.L. Differentiating Arabidopsis shoots from leaves by combined YABBY activities. Plant Cell. 2010;22:2113-2130. DOI 10.1105/tpc.110.075853.
25. Shchennikova A.V., Slugina M.A., Beletsky A.V., Filyushin M.A., Mardanov A.A., Shulga O.A., Kochieva E.Z., Ravin N.V., Skryabin K.G. The YABBY genes of leaf and leaf-like organ polarity in leafless plant Monotropa hypopitys. Int. J. Genomics. 2018;2018:7203469. DOI 10.1155/2018/7203469.
26. Shulga O.A., Shchennikova A.V., Beletsky A.V., Mardanov A.V., Kochieva E.Z., Filyushin M.A., Ravin N.V., Skryabin K.G. Transcriptome-wide characterization of the MADS-box family in Pinesap Monotropa hypopitys reveals flowering conservation in non-photosynthetic myco-heterotrophs. J. Plant Growth Regul. 2018;37:768783. DOI 10.1007/s00344-017-9772-9.
27. Siegfried K.R., Eshed Y., Baum S.F., Otsuga D., Drews G.N., Bowman J.L. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development. 1999;126(18):4117-4128.
28. Stahl Y., Wink R.H., Ingram G.C., Simon R. A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr. Biol. 2009;19(11):909-914. DOI 10.1016/j.cub.2009.03.060.
29. Stahle M.I., Kuehlich J., Staron L., von Arnim A.G., Golz J.F. YABBYs and the transcriptional corepressors LEUNIG and LEUNIG_ HOMOLOG maintain leaf polarity and meristem activity in Arabidopsis. Plant Cell. 2009;21(10):3105-3118. DOI 10.1105/tpc.109.070458.
30. Stewart W.N., Rothwell G.W. Paleobotany and the Evolution of Plants. 2-nd ed., Cambridge: Cambridge University Press, 1993.
31. Strable J., Wallace J.G., Unger-Wallace E., Briggs S., Bradbury P.J., Buckler E.S., Vollbrecht E. Maize YABBY genes drooping leaf1 and drooping leaf 2 regulate plant architecture. Plant Cell. 2017;29(7): 1622-1641. DOI 10.1105/tpc.16.00477.
32. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013;30(12):2725-2729. DOI 10.1093/molbev/mst197.
33. Tononi P., Möller M., Bencivenga S., Spada A. GRAMINIFOLIA homolog expression in Streptocarpus rexii is associated with the basal meristems in phyllomorphs, a morphological novelty in Gesneriaceae. Evol. Dev. 2010;12(1):61-73. DOI 10.1111/j.1525-142X.2009.00391.x.
34. Wallace G.D. Studies of the Monotropoidiae (Ericaceae): taxonomy and distribution. Wassman J. Biol. 1975;33:1-88.
35. Wicke S., Muller K.F., dePamphilis C.W., Quandt D., Bellot S., Schneeweiss G.M. Mechanistic model of evolutionary rate variation en route to a nonphotosynthetic lifestyle in plants. Proc. Natl. Acad. Sci. USA. 2016;113:9045-9050. DOI 10.1073/pnas.1607576113.
36. Yamada T., Yokota S., Hirayama Y., Imaichi R., Kato M., Gasser C.S. Ancestral expression patterns and evolutionary diversification of YABBY genes in angiosperms. Plant J. 2011;67(1):26-36. DOI 10.1111/j.1365-313X.2011.04570.x.
37. Zhang H., Zhou C. Signal transduction in leaf senescence. Plant Mol. Biol. 2013;82(6):539-545. DOI 10.1007/s11103-012-9980-4.
38. Zhang X.L., Yang Z.P., Zhang J., Zhang L.G. Ectopic expression of BraYAB1-702, a member of YABBY gene family in Chinese cabbage, causes leaf curling, inhibition of development of shoot apical meristem and flowering stage delaying in Arabidopsis thaliana. Int. J. Mol. Sci. 2013;14(7):14872-14891. DOI 10.3390/ijms140714872.
39. Zhao W., Su H.Y., Song J., Zhao X.Y., Zhang X.S. Ectopic expression of TaYAB1, a member of YABBY gene family in wheat, causes the partial abaxialization of the adaxial epidermises of leaves and arrests the development of shoot apical meristem in Arabidopsis. Plant Sci. 2006;170(2):364-371. DOI 10.1016/j.plantsci.2005.09.008.
40. Zuckerkandl E., Pauling L. Evolutionary divergence and convergence in proteins. Eds. V. Bryson, H.J. Vogel. Evolving Genes and Proteins. New York: Acad. Press, 1965;97-166. DOI 10.1016/B978-14832-2734-4.50017-6.