Генетические подходы к изучению функций серотонинергических нейронов у животных


https://doi.org/10.18699/VJ19.513

Полный текст:


Аннотация

Серотонинергическая система, которая принимает участие в регуляции большинства функций ЦНС, является одной из важнейших нейротрансмиттерных систем. Патогенез многих психических и нейродегенеративных заболеваний включает нарушения в функционировании этой системы. Понимание механизмов ее работы поможет не только разработать новые терапевтические подходы к лечению, но и установить, как эта нейротрансмиттерная система взаимодействует с другими отделами мозга, регулируя их деятельность. Ввиду сложности и гетерогенности анатомо-функционального устройства серотонинергической системы, в настоящее время лучшими инструментами для ее изучения являются методы, основанные на манипулировании отдельными типами нейронов и не затрагивающие нейроны других нейротрансмиттерных систем. Такое избирательное управление клетками возможно за счет генетической детерминированности их функций. Белки, обусловливающие уникальность клеточного типа, экспрессируются в нем под регуляцией клеточно-специфичных промоторов. С использованием промоторов, специфичных для генов серотониновой системы, возможно управление экспрессией гена интереса в серотонинергических нейронах. В обзоре рассмотрены подходы с применением таких промоторов. Генетические модели, созданные при помощи описанных подходов, используются для установления роли серотонинергической системы в модулировании поведения и обработке сенсорной информации. В частности, генетические нокауты по серотониновым генам sertpet1 и tph2 помогли выяснить вклад этих генов в формирование и функционирование головного мозга. Кроме того, описываются индуцибельные модели, которые позволили управлять экспрессией генов на различных стадиях онтогенеза. И наконец, приведены примеры достижений в применении этих генетических подходов в оптогенетике и хемогенетике, которые предоставили новый ресурс для изучения функций, разрядной активности и сигнальной трансдукции серотонинергических нейронов. При создании моделей патологических состояний и разработке фармакологических средств их коррекции на основе рассмотренных генетических подходов необходимо учитывать, что каждый из них имеет свои достоинства и ограничения, и выбирать наиболее подходящий из них.


Об авторах

У. С. Дрозд
Новосибирский национальный исследовательский государственный университет; Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия


Е. В. Шабурова
Новосибирский национальный исследовательский государственный университет; Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия


Н. Н. Дыгало
Новосибирский национальный исследовательский государственный университет; Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия


Список литературы

1. Albert P.R., Vahid-Ansari F., Luckhart C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of preand post-synaptic 5-HT1A receptor expression. Front. Behav. Neurosci. 2014;8:199. DOI 10.3389/fnbeh.2014.00199.

2. Alexander G.M., Rogan S.C., Abbas A.I., Armbruster B.N., Pei Y., Allen J.A., Nonneman R.J., Hartmann J., Moy S.S., Nicolelis M.A., McNamara J.O., Roth B.L. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron. 2009;63:27-39. DOI 10.1016/J.NEURON.2009.06.014.

3. Baker K.G., Halliday G.M., Halasz P., Hornung J.-P., Geffen L.B., Cotton R.G.H., Törk I. Cytoarchitecture of serotonin-synthesizing neurons in the pontine tegmentum of the human brain. Synapse. 1991; 7:301-320. DOI 10.1002/syn.890070407.

4. Benzekhroufa K., Liu B., Tang F., Teschemacher A.G., Kasparov S. Adenoviral vectors for highly selective gene expression in central serotonergic neurons reveal quantal characteristics of serotonin release in the rat brain. BMC Biotechnol. 2009;9:23. DOI 10.1186/1472-6750-9-23.

5. Blakely R.D. Physiological genomics of antidepressant targets: keeping the periphery in mind. J. Neurosci. 2001;21:8319-8323. DOI 10.1523/JNEUROSCI.21-21-08319.2001.

6. Calizo L.H., Akanwa A., Ma X., Pan Y., Lemos J.C., Craige C., Heemstra L.A., Beck S.G. Raphe serotonin neurons are not homogenous: electrophysiological, morphological and neurochemical evidence. Neuropharmacology. 2011;61:524-543. DOI 10.1016/j.neuropharm. 2011.04.008.

7. Carlson K.S., Whitney M.S., Gadziola M.A., Deneris E.S., Wesson D.W. Preservation of essential odor-guided behaviors and odorbased reversal learning after targeting adult brain serotonin synthesis. eNeuro. 2016;3(5):e0257-16.2016. DOI 10.1523/ENEURO.025716.2016.

8. Challis C., Beck S.G., Berton O. Optogenetic modulation of descending prefrontocortical inputs to the dorsal raphe bidirectionally bias socioaffective choices after social defeat. Front. Behav. Neurosci. 2014;8:43. DOI 10.3389/fnbeh.2014.00043.

9. Choi S., Jonak E., Fernstrom J.D. Serotonin reuptake inhibitors do not prevent 5,7-dihydroxytryptamine-induced depletion of serotonin in rat brain. Brain Res. 2004;1007:19-28. DOI 10.1016/J.BRAINRES.2003.12.044.

10. Correia P.A., Lottem E., Banerjee D., Machado A.S., Carey M.R., Mainen Z.F. Transient inhibition and long-term facilitation of locomotion by phasic optogenetic activation of serotonin neurons. eLife. 2017;6:e20975. DOI 10.7554/eLife.20975.

11. Das A.T., Tenenbaum L., Berkhout B. Tet-On systems for doxycyclineinducible gene expression. Curr. Gene Ther. 2016;16:156-167. DOI 10.2174/1566523216666160524144041.

12. Deneris E.S. Molecular genetics of mouse serotonin neurons across the lifespan. Neuroscience. 2011;197:17-27. DOI 10.1016/J.NEUROSCIENCE.2011.08.061.

13. Deneris E.S., Wyler S.C. Serotonergic transcriptional networks and potential importance to mental health. Nat. Neurosci. 2012;15:519527. DOI 10.1038/nn.3039.

14. Donaldson Z.R., Piel D.A., Santos T.L., Richardson-Jones J., Leonardo E.D., Beck S.G., Champagne F.A., Hen R. Developmental effects of serotonin 1A autoreceptors on anxiety and social behavior. Neuropsychopharmacology. 2014;39:291-302. DOI 10.1038/npp.2013.185.

15. Ferguson S.M., Eskenazi D., Ishikawa M., Wanat M.J., Phillips P.E.M., Dong Y., Roth B.L., Neumaier J.F. Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat. Neurosci. 2011;14:22-24. DOI 10.1038/nn.2703.

16. Fernandez S.P., Muzerelle A., Scotto-Lomassese S., Barik J., Gruart A., Delgado-García J.M., Gaspar P. Constitutive and acquired serotonin deficiency alters memory and hippocampal synaptic plasticity. Neuropsychopharmacology. 2017;42:512-523. DOI 10.1038/npp.2016.134.

17. Garner A.R., Rowland D.C., Hwang S.Y., Baumgaertel K., Roth B.L., Kentros C., Mayford M. Generation of a synthetic memory trace. Science. 2012;335:1513-1516. DOI 10.1126/science.1214985.

18. Gaspar P., Cases O., Maroteaux L. The developmental role of serotonin: news from mouse molecular genetics. Nat. Rev. Neurosci. 2003;4: 1002-1012. DOI 10.1038/nrn1256.

19. Gautier A., El Ouaraki H., Bazin N., Salam S., Vodjdani G., Bourgoin S., Pezet S., Bernard J.-F., Hamon M. Lentiviral vector-driven inhibition of 5-HT synthesis in B3 bulbo-spinal serotonergic projections – consequences on nociception, inflammatory and neuropathic pain in rats. Exp. Neurol. 2017;288:11-24. DOI 10.1016/J.EXPNEUROL.2016.10.016.

20. Gong S., Doughty M., Harbaugh C.R., Cummins A., Hatten M.E., Heintz N., Gerfen C.R. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J. Neurosci. 2007;27:9817-9823. DOI 10.1523/JNEUROSCI.270707.2007.

21. Hainer C., Mosienko V., Koutsikou S., Crook J.J., Gloss B., Kasparov S., Lumb B.M., Alenina N. Beyond gene inactivation: evolution of tools for analysis of serotonergic circuitry. ACS Chem. Neurosci. 2016;6:1116-1129. DOI 10.1021/acschemneuro.5b00045.

22. Hilber B., Scholze P., Dorostkar M.M., Sandtner W., Holy M., Boehm S., Singer E.A., Sitte H.H. Serotonin-transporter mediated efflux: a pharmacological analysis of amphetamines and non-amphetamines. Neuropharmacology. 2005;49:811-819. DOI 10.1016/J.NEUROPHARM.2005.08.008.

23. Kim J.C., Cook M.N., Carey M.R., Shen C., Regehr W.G., Dymecki S.M. Linking genetically defined neurons to behavior through a broadly applicable silencing allele. Neuron. 2009;63:305-315. DOI 10.1016/j.neuron.2009.07.010.

24. Kristianto J., Johnson M.G., Zastrow R.K., Radcliff A.B., Blank R.D. Spontaneous recombinase activity of Cre–ERT2 in vivo. Transgenic Res. 2017;26:411-417. DOI 10.1007/s11248-017-0018-1.

25. Lammel S., Dölen G., Malenka R.C. Optogenetic Approaches to Neural Circuit Analysis in the Mammalian Brain. In: Lehner T., Miller B.L., State M.W. (Eds.). Genomics, Circuits, and Pathways in Clinical Neuropsychiatry. Acad. Press, 2016;221-231. DOI 10.1016/B978-012-800105-9.00014-7.

26. Li S., Yao W.-Q., Tao Y.-Z., Ma L., Liu X. Serotonergic neurons in the median raphe nucleus mediate anxietyand depression-like behavior. Sheng li xue bao: Acta Physiologica Sinica. 2018;70:228-236.

27. Li Y., Zhong W., Wang D., Feng Q., Liu Z., Zhou J., Jia C., Hu F., Zeng J., Guo Q., Fu L., Luo M. Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat. Commun. 2016;7:10503. DOI 10.1038/ncomms10503.

28. Li Z., Yang H.-Y., Wang Y., Zhang M.-L., Liu X.-R., Xiong Q., Zhang L.-N., Jin Y., Mou L.-S., Liu Y., Li R.-F., Rao Y., Dai Y.-F. Generation of tryptophan hydroxylase 2 gene knockout pigs by CRISPR/Cas9-mediated gene targeting. J. Biomed. Res. 2017;31: 445-452. DOI 10.7555/JBR.31.20170026.

29. Liu C., Maejima T., Wyler S.C., Casadesus G., Herlitze S., Deneris E.S. Pet-1 is required across different stages of life to regulate serotonergic function. Nat. Neurosci. 2010;13:1190-1198. DOI 10.1038/nn.2623.

30. Liu Z., Zhou J., Li Y., Hu F., Lu Y., Ma M., Feng Q., Zhang J., Wang D., Zeng J., Bao J., Kim J.-Y., Chen Z.-F., El Mestikawy S.,Luo M. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron. 2014;81:1360-1374. DOI 10.1016/J.NEURON.2014.02.010.

31. Lottem E., Lörincz M.L., Mainen Z.F. Optogenetic activation of dorsal raphe serotonin neurons rapidly inhibits spontaneous but not odorevoked activity in olfactory cortex. J. Neurosci. 2016;36:7-18. DOI 10.1523/JNEUROSCI.3008-15.2016.

32. Lukashev A.N., Zamyatnin A.A. Viral vectors for gene therapy: current state and clinical perspectives. Biochemistry (Moscow). 2016;81: 700-708. DOI 10.1134/S0006297916070063.

33. Luo J., Feng Q., Wei L., Luo M. Optogenetic activation of dorsal raphe neurons rescues the autistic-like social deficits in Shank3 knockout mice. Cell Res. 2017;27:950-953. DOI 10.1038/cr.2017.52.

34. Mahler S.V., Vazey E.M., Beckley J.T., Keistler C.R., McGlinchey E.M., Kaufling J., Wilson S.P., Deisseroth K., Woodward J.J., Aston-Jones G. Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat. Neurosci. 2014;17:577-585. DOI 10.1038/nn.3664.

35. Miyazaki K.W., Miyazaki K., Tanaka K.F., Yamanaka A., Takahashi A., Tabuchi S., Doya K. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards. Curr. Biol. 2014;24:2033-2040. DOI 10.1016/J.CUB.2014.07.041.

36. Mosienko V., Bert B., Beis D., Matthes S., Fink H., Bader M., Alenina N. Exaggerated aggression and decreased anxiety in mice deficient in brain serotonin. Transl. Psychiatry. 2012;2:e122. DOI 10.1038/tp.2012.44.

37. Müller C.P., Jacobs B.L. (Eds.). Handbook of the Behavioral Neurobiology of Serotonin. Acad. Press, 2010.

38. Muñoz-Jiménez C., Ayuso C., Dobrzynska A., Torres-Mendéz A., de la Crus Ruiz P., Askjaer P. An efficient FLP-based toolkit for spatiotemporal control of gene expression in Caenorhabditis elegans. Genetics. 2017;206:1763-1778. DOI 10.1534/genetics.117.201012.

39. Nishitani N., Nagayasu K., Asaoka N., Yamashiro M., Andoh C., Nagai Y., Kinoshita H., Kawai H., Shibui N., Liu B., Hewinson J., Shirakawa H., Nakagawa T., Hashimoto H., Kasparov S., Kaneko S. Manipulation of dorsal raphe serotonergic neurons modulates active coping to inescapable stress and anxiety-related behaviors in mice and rats. Neuropsychopharmacology. 2019;44:721-732. DOI 10.1038/s41386-018-0254-y.

40. Ohmura Y., Tanaka K.F., Tsunematsu T., Yamanaka A., Yoshioka M. Optogenetic activation of serotonergic neurons enhances anxietylike behaviour in mice. Int. J. Neuropsychopharmacol. 2014;17: 1777-1783. DOI 10.1017/S1461145714000637.

41. Patel P.D., Bochar D.A., Turner D.L., Meng F., Mueller H.M., Pontrello C.G. Regulation of tryptophan hydroxylase-2 gene expression by a bipartite RE-1 silencer of transcription/neuron restrictive silencing factor (REST/NRSF) binding motif. J. Biol. Chem. 2007;282: 26717-26724. DOI 10.1074/jbc.M705120200.

42. Patel P.D., Pontrello C., Burke S. Robust and tissue-specific expression of TPH2 versus TPH1 in rat raphe and pineal gland. Biol. Psychiatry. 2004;55:428-433. DOI 10.1016/J.BIOPSYCH.2003.09.002.

43. Piszczek L., Schlax K., Wyrzykowska A., Piszczek A., Audero E., Thilo Gross C. Serotonin 1A auto-receptors are not sufficient to modulate anxiety in mice. Eur. J. Neurosci. 2013;38:2621-2627. DOI 10.1111/ejn.12260.

44. Rao D.D., Vorhies J.S., Senzer N., Nemunaitis J. siRNA vs. shRNA: similarities and differences. Adv. Drug Deliv. Rev. 2009;61:746759. DOI 10.1016/J.ADDR.2009.04.004.

45. Ren J., Friedmann D., Xiong J., Liu C.D., Deloach K.E., Ran C., Pu A., Sun Y., Weissbourd B., Neve R.L., Horowitz M., Luo L. Anatomical, physiological, and functional heterogeneity of the dorsal raphe serotonin system. bioRxiv. 2018. DOI 10.1101/257378.

46. Richardson-Jones J.W., Craige C.P., Guiard B.P., Stephen A., Metzger K.L., Kung H.F., Gardier A.M., Dranovsky A., David D.J., Beck S.G., Hen R., Leonardo E.D. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron. 2010;65:40-52. DOI 10.1016/j.neuron.2009.12.003.

47. Richardson-Jones J.W., Craige C.P., Nguyen T.H., Kung H.F., Gardier A.M., Dranovsky A., David D.J., Guiard B.P., Beck S.G., Hen R., Leonardo E.D. Serotonin-1A autoreceptors are necessary and sufficient for the normal formation of circuits underlying innate anxiety. J. Neurosci. 2011;31:6008-6018. DOI 10.1523/JNEUROSCI.583610.2011.

48. Sachs B.D., Jacobsen J.P.R., Thomas T.L., Siesser W.B., Roberts W.L., Caron M.G. The effects of congenital brain serotonin deficiency on responses to chronic fluoxetine. Transl. Psychiatry. 2013;3:e291. DOI 10.1038/tp.2013.65.

49. Scofield M.D., Boger H.A., Smith R.J., Li H., Haydon P.G., Kalivas P.W. Gq-DREADD selectively initiates glial glutamate release and inhibits cue-induced cocaine seeking. Biol. Psychiatry. 2015; 78:441-451. DOI 10.1016/J.BIOPSYCH.2015.02.016.

50. Scott M.M., Krueger K.C., Deneris E.S. A differentially autoregulated Pet-1 enhancer region is a critical target of the transcriptional cascade that governs serotonin neuron development. J. Neurosci. 2005; 25:2628-2636. DOI 10.1523/JNEUROSCI.4979-04.2005.

51. Shishkina G.T., Lanshakov D.A., Bannova A.V., Kalinina T.S., Agarina N.P., Dygalo N.N. Doxycycline used for control of transgene expression has its own effects on behaviors and Bcl-xL in the rat hippocampus. Cell. Mol. Neurobiol. First online 2017; Publ. 2018; 38:281-288. DOI 10.1007/s10571-017-0545-6.

52. Shizuya H., Birren B., Kim U.J., Mancino V., Slepak T., Tachiiri Y., Simon M. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA. 1992;89:8794-8797.

53. Singh A.K., Zajdel J., Mirrasekhian E., Almoosawi N., Frisch I., Klawonn A.M., Jaarola M., Fritz M., Engblom D. Prostaglandin-mediated inhibition of serotonin signaling controls the affective component of inflammatory pain. J. Clin. Invest. 2017;127:1370-1374. DOI 10.1172/JCI90678.

54. Teissier A., Chemiakine A., Inbar B., Bagchi S., Ray R.S., Palmiter R.D., Dymecki S.M., Moore H., Ansorge M.S. Activity of raphé serotonergic neurons controls emotional behaviors. Cell Rep. 2015;13:1965-1976. DOI 10.1016/J.CELREP.2015.10.061.

55. Tye K.M., Deisseroth K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 2012;13:251-266. DOI 10.1038/nrn3171.

56. Urban D.J., Roth B.L. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu. Rev. Pharmacol. Toxicol. 2015;55:399-417. DOI 10.1146/ANNUREV-PHARMTOX-010814-124803.

57. Urban D.J., Zhu H., Marcinkiewcz C.A., Michaelides M., Oshibuchi H., Rhea D., Aryal D.K., Farrell M.S., Lowery-Gionta E., Olsen R.H.J., Wetsel W.C., Kash T.L., Hurd Y.L., Tecott L.H., Roth B.L. Elucidation of the behavioral program and neuronal network encoded by dorsal raphe serotonergic neurons. Neuropsychopharmacology. 2016;41:1404-1415. DOI 10.1038/npp.2015.293.

58. Vadodaria K.C., Stern S., Marchetto M.C., Gage F.H. Serotonin in psychiatry: in vitro disease modeling using patient-derived neurons. Cell Tissue Res. 2018;371:161-170. DOI 10.1007/s00441-017-2670-4.

59. Vazey E.M., Aston-Jones G. Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proc. Natl. Acad. Sci. USA. 2014;111:3859-3864. DOI 10.1073/pnas.1310025111.

60. Verheij M.M.M., Contet C., Karel P., Latour J., van der Doelen R.H.A., Geenen B., van Hulten J.A., Meyer F., Kozicz T., George O., Koob G.F., Homberg J.R. Median and dorsal raphe serotonergic neurons control moderate versus compulsive cocaine intake. Biol. Psychiatry. 2018;83:1024-1035. DOI 10.1016/J.BIOPSYCH.2017.10.031.

61. Walsh J.J., Christoffel D.J., Heifets B.D., Ben-Dor G.A., Selimbeyoglu A., Hung L.W., Deisseroth K., Malenka R.C. 5-HT release in nucleus accumbens rescues social deficits in mouse autism model. Nature. 2018;560:589-594. DOI 10.1038/s41586-018-0416-4.

62. Weber T., Renzland I., Baur M., Mönks S., Herrmann E., Huppert V., Nürnberg F., Schönig K., Bartsch D. Tetracycline inducible genemanipulation in serotonergic neurons. PLoS One. 2012;7:e38193. DOI 10.1371/journal.pone.0038193.

63. Whitney M.S., Shemery A.M., Yaw A.M., Donovan L.J., Glass J.D., Deneris E.S. Adult brain serotonin deficiency causes hyperactivity, circadian disruption, and elimination of siestas. J. Neurosci. 2016; 36:9828-9842. DOI 10.1523/JNEUROSCI.1469-16.2016.

64. Wong-Lin K., Wang D.-H., Moustafa A.A., Cohen J.Y., Nakamura K. Toward a multiscale modeling framework for understanding serotonergic function. J. Psychopharmacol. (Oxford, England). 2017;31: 1121-1136. DOI 10.1177/0269881117699612.

65. Zhao S., Ting J.T., Atallah H.E., Qiu L., Tan J., Gloss B., Augustine G.J., Deisseroth K., Luo M., Graybiel A.M., Feng G. Cell type – specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat. Meth. 2011;8:745-752. DOI 10.1038/nmeth.1668.

66. Zhu H., Pleil K.E., Urban D.J., Moy S.S., Kash T.L., Roth B.L. Chemogenetic inactivation of ventral hippocampal glutamatergic neurons disrupts consolidation of contextual fear memory. Neuropsychopharmacology. 2014;39:1880-1892. DOI 10.1038/npp.2014.35.

67. Zhu H., Roth B.L. Silencing synapses with DREADDs. Neuron. 2014; 82:723-725. DOI 10.1016/J.NEURON.2014.05.002.

68. Zhuang X., Masson J., Gingrich J.A., Rayport S., Hen R. Targeted gene expression in dopamine and serotonin neurons of the mouse brain. J. Neurosci. Meth. 2005;143:27-32. DOI 10.1016/J.JNEUMETH.2004.09.020.


Дополнительные файлы

Просмотров: 32

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)