Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Влияние неонатального введения дексаметазона на когнитивные способности взрослых самцов мышей и экспрессию генов в гипоталамусе

https://doi.org/10.18699/VJ19.514

Полный текст:

Аннотация

Ранний постнатальный период является критическим для развития нервной системы. Стресс в этот период вызывает негативные отдаленные последствия, которые отражаются как на поведенческом, так и на молекулярном уровне. В нашем исследовании для моделирования повышенного уровня глюкокортикоидов, характерного для стрессирующего воздействия в раннем возрасте, мы использовали введение дексаметазона, агониста глюкокортикоидных рецепторов, в понижающихся дозах в первые три дня жизни (0.5, 0.3, 0.1 мг/кг, п/к). У взрослых самцов мышей с неонатальным введением дексаметазона было найдено увеличение относительного веса надпочечников и снижение веса тела, при этом базальный уровень кортикостерона в крови не изменялся. Введение дексаметазона в раннем возрасте оказало негативное воздействие на скорость обучения и формирование пространственной памяти в водном лабиринте Морриса у взрослых животных. Мы проанализировали влияние повышенного уровня глюкокортикоидов в раннем возрасте на экспрессию генов CrhAvpGrMr, участвующих в регуляции гипоталамо-гипофизарно-надпочечниковой системы (ГГНС), в гипоталамусе взрослых животных. Уровень экспрессии гена минералокортикоидного рецептора (Mr) был снижен достоверно, а гена глюкокортикоидного рецептора (Gr) – на уровне тенденции (р = 0.058) у самцов мышей с неонатальным введением дексаметазона по сравнению с введением физиологического раствора. Уровень экспрессии гена, кодирующего кортикотропин-рилизинг гормон (Crh), не изменялся, тогда как экспрессия гена вазопрессина (Avp) повышалась под влиянием неонатального введения дексаметазона. Полученные данные демонстрируют возможное нарушение механизмов негативной регуляции ГГНС на уровне гипоталамуса, в которую вовлечены глюкокортикоидный и минералокортикоидный рецепторы. Нарушение функции ГГНС при активации глюкокортикоидной системы в раннем возрасте может быть причиной развития когнитивных нарушений у взрослых животных. 

Об авторах

Н. П. Бондарь
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия
Новосибирск


В. В. Решетников
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


К. В. Бурдеева
Новосибирская государственная медицинская академия
Россия
Новосибирск


Т. И. Меркулова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия
Новосибирск


Список литературы

1. Aguilera G., Rabadan-Diehl C. Vasopressinergic regulation of the hypothalamic-pituitary-adrenal axis: implications for stress adaptation. Regul. Pept. 2000;96(1-2):23-29.

2. Aisa B., Tordera R., Lasheras B., Del Rio J., Ramirez M.J. Cognitive impairment associated to HPA axis hyperactivity after maternal separation in rats. Psychoneuroendocrinology. 2007;32(3):256-266. DOI 10.1016/j.psyneuen.2006.12.013.

3. Batluk U.I., Burdeeva K.V., Degtyareva A.O., Dolganova O.M., Ershov N.I., Merkulova T.I., Bondar N.P. The long-term consequences of early-life dexamethasone treatment on the cognitive ability of male mice and gene expression in the hippocampus. In: 11th Int. Conf. on Bioinformatics of Genome Regulation and StructureSystems Biology (BGRSSB-2018). Novosibirsk, August 20–25. Novosibirsk, 2018;7.

4. Berardelli R., Karamouzis I., D’Angelo V., Zichi C., Fussotto B., Giordano R., Ghigo E., Arvat E. Role of mineralocorticoid receptors on the hypothalamus-pituitary-adrenal axis in humans. Endocrine. 2013;43(1):51-58. DOI 10.1007/s12020-012-9750-8.

5. Bhatt A.J., Feng Y., Wang J., Famuyide M., Hersey K. Dexamethasone induces apoptosis of progenitor cells in the subventricular zone and dentate gyrus of developing rat brain. J. Neurosci. Res. 2013;91(9): 1191-1202. DOI 10.1002/jnr.23232.

6. Bondar N.P., Lepeshko A.A., Reshetnikov V.V. Effects of early-life stress on social and anxiety-like behaviors in adult mice: sex-specific effects. Behav. Neurol. 2018;2018:1538931. DOI 10.1155 2018/ 1538931.

7. Chiu H.F., Chan M.W.Y., Cheng C.Y., Chou J.L., Lin J.M., Yang Y.L., Lu K.T. Neonatal dexamethasone treatment suppresses hippocampal estrogen receptor α-expression in adolescent female rats. Mol. Neurobiol. Publ. online 2018. Publ. 2019;56:2224-2233. DOI 10.1007/s12035-018-1214-6.

8. Claessens S.E., Daskalakis N.P., Oitzl M.S., de Kloet E.R. Early handling modulates outcome of neonatal dexamethasone exposure. Horm. Behav. 2012;62(4):433-441. DOI 10.1016/j.yhbeh.2012.07.011.

9. De Kloet E.R. Functional profile of the binary brain corticosteroid receptor system: mediating, multitasking, coordinating, integrating. Eur. J. Pharmacol. 2013;719(1-3):53-62. DOI 10.1016/j.ejphar.2013.04.053.

10. De Kloet E.R., Vreugdenhil E., Oitzl M.S., Joels M. Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 1998;19(3):269301. DOI 10.1210/edrv.19.3.0331.

11. Drouin J., Sun Y.L., Chamberland M., Gauthier Y., De Lean A., Nemer M., Schmidt T.J. Novel glucocorticoid receptor complex with DNA element of the hormone-repressed POMC gene. EMBO J. 1993;12(1):145-156.

12. Felszeghy K., Bagdy G., Nyakas C. Blunted pituitary-adrenocortical stress response in adult rats following neonatal dexamethasone treatment. J. Neuroendocrinol. 2000;12(10):1014-1021.

13. Felszeghy K., Gaspar E., Nyakas C. Long-term selective down-regulation of brain glucocorticoid receptors after neonatal dexamethasone treatment in rats. J. Neuroendocrinol. 1996;8(7):493-499.

14. Feng Y., Rhodes P.G., Liu H., Bhatt A.J. Dexamethasone induces neurodegeneration but also up-regulates vascular endothelial growth factor A in neonatal rat brains. Neuroscience. 2009;158(2):823-832. DOI 10.1016/j.neuroscience.2008.10.024.

15. Ferguson S.A., Paule M.G., Holson R.R. Neonatal dexamethasone on day 7 in rats causes behavioral alterations refl of hippocampal, but not cerebellar, defi Neurotoxicol. Teratol. 2001;23(1):57-69.

16. Flagel S.B., Vazquez D.M., Watson S.J., Jr., Neal C.R., Jr. Effects of tapering neonatal dexamethasone on rat growth, neurodevelopment, and stress response. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002;282(1):R55-63. DOI 10.1152/ajpregu.2002.282.1.R55.

17. Gjerstad J.K., Lightman S.L., Spiga F. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress. 2018; 21(5):403-416. DOI 10.1080/10253890.2018.1470238.

18. Harno E., Gali Ramamoorthy T., Coll A.P., White A. POMC: The Physiological Power of Hormone Processing. Physiol. Rev. 2018;98(4): 2381-2430. DOI 10.1152/physrev.00024.2017.

19. Kamphuis P.J., Croiset G., Bakker J.M., Van Bel F., Van Ree J.M., Wiegant V.M. Neonatal dexamethasone treatment affects social behaviour of rats in later life. Neuropharmacology. 2004;47(3):461-474. DOI 10.1016/j.neuropharm.2004.04.008.

20. Kamphuis P.J., Gardoni F., Kamal A., Croiset G., Bakker J.M., Cattabeni F., Gispen W.H., van Bel F., Di Luca M., Wiegant V.M. Longlasting effects of neonatal dexamethasone treatment on spatial learning and hippocampal synaptic plasticity: involvement of the NMDA receptor complex. FASEB J. 2003;17(8):911-913. DOI 10.1096/fj.02-0333fje.

21. Ko M.C., Hung Y.H., Ho P.Y., Yang Y.L., Lu K.T. Neonatal glucocorticoid treatment increased depression-like behaviour in adult rats. Int. J. Neuropsychopharmacol. 2014;17(12):1995-2004. DOI 10.1017/S1461145714000868.

22. Kreider M.L., Tate C.A., Cousins M.M., Oliver C.A., Seidler F.J., Slotkin T.A. Lasting effects of developmental dexamethasone treatment on neural cell number and size, synaptic activity, and cell signaling: critical periods of vulnerability, dose-effect relationships, regional targets, and sex selectivity. Neuropsychopharmacology. 2006;31(1): 12-35. DOI 10.1038/sj.npp.1300783.

23. Kulikov A.V., Kulikov V.A., Bazovkina D.V. Digital registration and analysis of visual information in behavioral experiment. Zhurnal Vysshey Nervnoy Deyatel’nosti im. I.P. Pavlova = I.P. Pavlov Journal of Higher Nervous Activity. 2005;55(1):126-132. (in Russian)]

24. Ladd C.O., Huot R.L., Thrivikraman K.V., Nemeroff C.B., Meaney M.J., Plotsky P.M. Long-term behavioral and neuroendocrine adaptations to adverse early experience. Prog. Brain Res. 2000;122:81-103.

25. Ladd C.O., Huot R.L., Thrivikraman K.V., Nemeroff C.B., Plotsky P.M. Long-term adaptations in glucocorticoid receptor and mineralocorticoid receptor mRNA and negative feedback on the hypothalamo-pituitary-adrenal axis following neonatal maternal separation. Biol. Psychiatry. 2004;55(4):367-375. DOI 10.1016/j.biopsych.2003.10.007.

26. Lanshakov D.A., Sukhareva E.V., Kalinina T.S., Dygalo N.N. Dexamethasone-induced acute excitotoxic cell death in the developing brain. Neurobiol. Dis. 2016;91:1-9. DOI 10.1016/j.nbd.2016.02.009. Lehmann J., Feldon J. Long-term biobehavioral effects of maternal separation in the rat: consistent or confusing? Rev. Neurosci. 2000;11(4):383-408.

27. Leret M.L., Peinado V., Suarez L.M., Tecedor L., Gamallo A., Gonzalez J.C. Role of maternal adrenal glands on the developing serotoninergic and aminoacidergic systems of the postnatal rat brain. Int. J. Dev. Neurosci. 2004;22(2):87-93. DOI 10.1016/j.ijdevneu.2003.12.005.

28. Levine S. The ontogeny of the hypothalamic-pituitary-adrenal axis. The influence of maternal factors. Ann. N.Y. Acad. Sci. 1994;746:275288; discussion 289-293.

29. Li S.X., Fujita Y., Zhang J.C., Ren Q., Ishima T., Wu J., Hashimoto K. Role of the NMDA receptor in cognitive deficits, anxiety and depressive-like behavior in juvenile and adult mice after neonatal dexamethasone exposure. Neurobiol. Dis. 2014a;62:124-134. DOI 10.1016/j.nbd.2013.09.004.

30. Li S.X., Zhang J.C., Wu J., Hashimoto K. Antidepressant effects of ketamine on depression-like behavior in juvenile mice after neonatal dexamethasone exposure. Clin. Psychopharmacol. Neurosci. 2014b; 412(2):124-127. DOI 10.9758/cpn.2014.12.2.124.

31. Lin H.J., Huang C.C., Hsu K.S. Effects of neonatal dexamethasone treatment on hippocampal synaptic function. Ann. Neurol. 2006; 59(6):939-951. DOI 10.1002/ana.20885.

32. Machhor N., Balaji T., Raju T.N. Postnatal dexamethasone and long term learning and memory functions in developing rats: effect of postnatal age and gender. Life Sci. 2004;74(15):1925-1935. DOI 10.1016/j.lfs.2003.09.044.

33. Malkoski S.P., Dorin R.I. Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropin-releasing hormone gene. Mol. Endocrinol. 1999;13(10):1629-1644. DOI 10.1210/mend.13.10.0351.

34. McEwen B.S., Gould E.A., Sakai R.R. The vulnerability of the hippocampus to protective and destructive effects of glucocorticoids in relation to stress. Br. J. Psychiatry. 1992;160(S15):18-23.

35. Mesquita A.R., Wegerich Y., Patchev A.V., Oliveira M., Leao P., Sousa N., Almeida O.F. Glucocorticoids and neuroand behavioural development. Semin. Fetal Neonatal Med. 2009;14(3):130-135. DOI 10.1016/j.siny.2008.11.002.

36. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods. 1984;11(1):47-60.

37. Murgatroyd C., Patchev A.V., Wu Y., Micale V., Bockmuhl Y., Fischer D., Holsboer F., Wotjak C.T., Almeida O.F., Spengler D. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat. Neurosci. 2009;12(12):1559-1566. DOI 10.1038/nn.2436.

38. Navailles S., Zimnisky R., Schmauss C. Expression of glucocorticoid receptor and early growth response gene 1 during postnatal development of two inbred strains of mice exposed to early life stress. Dev. Neurosci. 2010;32(2):139-148. DOI 10.1159/000293989.

39. Neal C.R., Jr., Weidemann G., Kabbaj M., Vazquez D.M. Effect of neonatal dexamethasone exposure on growth and neurological development in the adult rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004;287(2):R375-385. DOI 10.1152/ajpregu.00012.2004.

40. Paul S., Jeon W.K., Bizon J.L., Han J.S. Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment. Front. Aging Neurosci. 2015;7:43. DOI 10.3389/fnagi.2015.00043.

41. Pervanidou P., Chrousos G.P. Early-life stress: from neuroendocrine mechanisms to stress-related disorders. Horm. Res. Paediatr. 2018; 89(5):372-379. DOI 10.1159/000488468.

42. Pryce C.R., Feldon J. Long-term neurobehavioural impact of the postnatal environment in rats: manipulations, effects and mediating mechanisms. Neurosci. Biobehav. Rev. 2003;27(1-2):57-71. DOI 10.1016/S0149-7634(03)00009-5.

43. Qaheri S.N., Ali A.B., Alalwaan A.A., Ahmed F.A., Ahmed M.M., Kamal A.H. Neonatal dexamethasone exposure in rats resulted in hippocampal learning and memory defects with decreased convulsion threshold later in adult life. Neurosciences (Riyadh). 2013;18(4): 388-390.

44. Reshetnikov V.V., Lepeshko A.A., Ryabushkina J.A., Studenikina A.A., Merkulova T.I., Bondar N.P. The long-term effects of early postnatal stress on cognitive abilities and expression of genes of the glutamatergic system in mice. Neurochem. J. 2018a;12(2):142-151. DOI 10.1134/S1819712418020095.

45. Reshetnikov V.V., Studenikina A.A., Ryabushkina J.A., Merkulova T.I., Bondar N.P. The impact of early-life stress on the expression of HPA-associated genes in the adult murine brain. Behaviour. 2018b; 155(2-3):181-203. DOI 10.1163/1568539X-00003482.

46. Sanchez M.M., Ladd C.O., Plotsky P.M. Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models. Dev. Psychopathol. 2001;13(3):419-449. Sapolsky R.M., McEwen B.S., Rainbow T.C. Quantitative autoradiography of [3H]corticosterone receptors in rat brain. Brain Res. 1983; 271(2):331-334.

47. Schmidt M.V. Molecular mechanisms of early life stress – lessons from mouse models. Neurosci. Biobehav. Rev. 2010;34(6):845-852. DOI 10.1016/j.neubiorev.2009.05.002.

48. Suri D., Veenit V., Sarkar A., Thiagarajan D., Kumar A., Nestler E.J., Galande S., Vaidya V.A. Early stress evokes age-dependent biphasic changes in hippocampal neurogenesis, BDNF expression, and cognition. Biol. Psychiatry. 2013;73(7):658-666. DOI 10.1016/j.biopsych.2012.10.023.

49. Swolin-Eide D., Dahlgren J., Nilsson C., Albertsson Wikland K., Holmang A., Ohlsson C. Affected skeletal growth but normal bone mineralization in rat offspring after prenatal dexamethasone exposure. J. Endocrinol. 2002;174(3):411-418.

50. Teicher M.H., Samson J.A., Anderson C.M., Ohashi K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat. Rev. Neurosci. 2016;17(10):652-666. DOI 10.1038/nrn. 2016.111.

51. Tijsseling D., Camm E.J., Richter H.G., Herrera E.A., Kane A.D., Niu Y., Cross C.M., de Vries W.B., Derks J.B., Giussani D.A. Statins prevent adverse effects of postnatal glucocorticoid therapy on the developing brain in rats. Pediatr. Res. 2013;74(6):639-645. DOI 10.1038/pr.2013.152.

52. van Bodegom M., Homberg J.R., Henckens M. Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure. Front. Cell. Neurosci. 2017;11:87. DOI 10.3389/fncel.2017.00087.

53. van Eekelen J.A., Bohn M.C., de Kloet E.R. Postnatal ontogeny of mineralocorticoid and glucocorticoid receptor gene expression in regions of the rat teland diencephalon. Dev. Brain Res. 1991;61(1):33-43.

54. Vazquez D.M., Neal C.R., Jr., Patel P.D., Kaciroti N., Lopez J.F. Regulation of corticoid and serotonin receptor brain system following early life exposure of glucocorticoids: long term implications for the neurobiology of mood. Psychoneuroendocrinology. 2012;37(3):421437. DOI 10.1016/j.psyneuen.2011.07.012.

55. Vorhees C.V., Williams M.T. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 2006;1(2):848-858. DOI 10.1038/nprot.2006.116.

56. Wang Y.C., Huang C.C., Hsu K.S. The role of growth retardation in lasting effects of neonatal dexamethasone treatment on hippocampal synaptic function. PLoS One. 2010;5(9):e12806. DOI 10.1371/journal.pone.0012806.

57. Weems C.F., Russell J.D., Neill E.L., McCurdy B.H. Annual research review: pediatric posttraumatic stress disorder from a neurodevelopmental network perspective. J. Child Psychol. Psychiatry. First publ. 2018. Publ. 2019;60(4):395-408. DOI 10.1111/jcpp.12996.

58. Weiler H.A., Wang Z., Atkinson S.A. Whole body lean mass is altered by dexamethasone treatment through reductions in protein and energy utilization in piglets. Biol. Neonate. 1997;71(1):53-59. DOI 10.1159/000244397.

59. Wong P., Sze Y., Gray L.J., Chang C.C., Cai S., Zhang X. Early life environmental and pharmacological stressors result in persistent dysregulations of the serotonergic system. Front. Behav. Neurosci. 2015;9:94. DOI 10.3389/fnbeh.2015.00094.

60. Yates N.J., Robertson D., Rodger J., Martin-Iverson M.T. Effects of neonatal dexamethasone exposure on adult neuropsychiatric traits in rats. PLoS One. 2016;11(12):e0167220. DOI 10.1371/journal.pone.0167220.


Просмотров: 67


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)