Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Новейшие технологии высокопроизводительного секвенирования транскриптома отдельных клеток

https://doi.org/10.18699/VJ19.520

Полный текст:

Аннотация

Огромное количество полногеномных и транскриптомных данных, полученных с помощью современных технологий секвенирования нового поколения для целых организмов, не смогло дать ответы на многие вопросы в онкологии, иммунологии, физиологии, нейробиологии, зоологии и других областях науки и медицины. Так как основой всех одноклеточных и многоклеточных организмов является клетка, то необходимо изучение биологических процессов на ее уровне. Это понимание дало толчок развитию нового направления и появлению технологий, позволяющих работать с единичными клетками (технологии single-cell). Быстрое развитие не только приборной базы, но и различных усовершенствованных протоколов для работы с единичными клетками обусловлено актуальностью этих исследований во многих областях науки и медицины. Изучение особенностей различных этапов онтогенеза, определение закономерностей дифференциации клеток и последующего развития тканей, проведение геномного и транскриптомного анализов в различных областях медицины (особенно востребовано в иммунологии, онкологии), классификация типов и состояний клеток, закономерностей биохимических и физиологических процессов с применением технологий single-cell позволяют проводить комплексные исследования на новом уровне. Разработанные первые платформы для осуществления секвенирования транскриптомов отдельных клеток (scRNA-seq) проводили изоляцию не более ста клеток единовременно, что оказалось недостаточным в связи с выявленной высокой гетерогенностью клеток, обнаруженными минорными типами клеток, которые не детектировались по морфологическим признакам, и сложными регуляторными путями в организме. В настоящее время появились методики изоляции, захвата и секвенирования транскриптомов (scRNA-seq) десятков тысяч клеток единовременно. Однако новые технологии имеют определенные отличия как на этапе пробоподготовки, так и во время проведения биоинформатического анализа. В работе рассмотрены наиболее эффективные методы множественного параллельного scRNA-seq на примере современной платформы для изоляции и баркодирования клеток 10ХGenomics, а также особенности проведения такого эксперимента, дальнейший биоинформатический анализ полученных данных, перспективы использования и области применения новых высокопроизводительных технологий.

Об авторах

Е. А. Водясова
Институт биологии южных морей имени А.О. Ковалевского Российской академии наук
Россия
Москва


Э. С. Челебиева
Институт биологии южных морей имени А.О. Ковалевского Российской академии наук
Россия
Москва


О. Н. Кулешова
Институт биологии южных морей имени А.О. Ковалевского Российской академии наук
Россия
Москва


Список литературы

1. Adamson B., Norman T.M., Jost M., Cho M.Y., Nunez J.K., Chen Y., Villalta J.E., Gilbert L.A., Horlbeck M.A., Hein M.Y., Pak R.A., Gray A.N., Gross C.A., Dixit A., Parnas O., Regev A., Weissman J.S. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell. 2016;167(7):1867-1882.e21. DOI 10.1016/j.cell.2016.11.048.

2. Andrews T.S., Hemberg M. Identifying cell populations with scRNASeq. Mol. Aspects Med. 2018;59:114-122. DOI 10.1016/j.mam.2017.07.002.

3. Bacher R., Chu L.-F., Leng N., Gasch A.P., Thomson J.A., Stewart R.M., Newton M., Kendziorski C. SCnorm: robust normalization of single-cell RNA-seq data. Nat. Methods. 2017;14(6):584586. DOI 10.1038/nmeth.4263.

4. Belton J.M., McCord R.P., Gibcus J.H., Naumova N., Zhan Y., Dekker J. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods. 2012;58(3):268-276. DOI 10.1016/j.ymeth.2012.05.001.

5. Brehm-Stecher B.F., Johnson E.A. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 2004; 68(3):538-559.

6. Brennecke P., Anders S., Kim J.K., Kolodziejczyk A.A., Zhang X., Proserpio V., Baying B., Benes V., Teichmann S.A., Marioni J.C., Heisler M.G. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods. 2013;10:1093-1095.

7. Butler A., Hoffman P., Smibert P., Papalexi E., Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 2018;36(5):411-420. DOI 10.1038/nbt.4096.

8. Callaway A. The trickiest family tree in biology. Nature. 2017;547 (7661):20-22. DOI 10.1038/547020a.

9. Chen Y.R., Zheng Y., Liu B., Zhong S., Giovannoni J., Fei Z. A costeffective method for Illumina small RNA-Seq library preparation using T4 RNA ligase 1 adenylated adapters. Plant Methods. 2012;8(1):41. DOI 10.1186/1746-4811-8-41.

10. Coombe L., Warren R.L., Jackman S.D., Yang C., Vandervalk B.P., Moore R.A., Pleasance S., Coope R.J., Bohlmann J., Holt R.A., Jones S.J.M., Birol I. Assembly of the complete Sitka spruce chloroplast genome using 10× Genomics’ GemCode sequencing data. PLoS One. 2016;11(9):e0163059. DOI 10.1371/journal.pone.0163059.

11. Deng Q., Ramsköld D., Reinius B., Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. 2014;343(6167):193-196. DOI 10.1126/science.1245316.

12. Der E., Ranabothu S., Suryawanshi H., Akat K.M., Clancy R., Morozov P., Kustagi M., Czuppa M., Izmirly P., Belmont H.M., Wang T., Jordan N., Bornkamp N., Nwaukoni J., Martinez J., Goilav B., Buyon J.P., Tuschl T., Putterman C. Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. JCI Insight. 2017;2(9). pii: 93009. DOI 10.1172/jci.insight.93009.

13. Derrien T., Johnson R., Bussotti G., Tanzer A., Djebali S., Tilgner H., Guernec G., Martin D., Merkel A., Knowles D.G., Lagarde J., Veeravalli L., Ruan X., Ruan Y., Lassmann T., Carninci P., Brown J.B., Lipovich L., Gonzalez J.M., Thomas M., Davis C.A., Shiekhattar R., Gingeras T.R., Hubbard T.J., Notredame C., Harrow J., Guigo R. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775-1789. DOI 10.1101/gr.132159.111.

14. Eisenstein M. Startups use short-read data to expand long-read sequencing market. Nat. Biotechnol. 2015;33(5):433-435. DOI 10.1038/nbt0515-433.

15. Fan J., Salathia N., Liu R., Kaeser G.E., Yung Y.C., Herman J.L., Kaper F., Fan J.-B., Zhang K., Chun J., Kharchenko P.V. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat. Methods. 2016;13:241-244. DOI 10.1038/nmeth.3734.

16. Frieda K.L., Linton J.M., Hormoz S., Choi J., Chow K.-H.K., Singer Z.S., Budde M.W., Elowitz M.B., Cai L. Synthetic recording and in situ readout of lineage information in single cells. Nature. 2017;541(7635):107-111. DOI 10.1038/nature20777.

17. Fustin J.M., Dоi M., Yamaguchi Y., Hida H., Nishimura S., Yoshida M., Isagawa T., Morioka M.S., Kakeya H., Manabe I., Okamura H. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 2013;155(4):793-806. DOI 10.1016/j.cell.2013.10.026.

18. Gawad C., Koh W., Quake S.R. Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proc. Natl. Acad. Sci. USA. 2014;111(50):17947-17952. DOI 10.1073/pnas.1420822111.

19. Gawad C., Koh W., Quake S.R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 2016;17(3):175-188. DOI 10.1038/nrg.2015.16.

20. Gerber T., Willscher E., Loeffler-Wirth H., Hopp L., Schadendorf D., Schartl M., Anderegg U., Camp G., Treutlein B., Binder H., Kunz M. Mapping heteroge-neity in patient-derived melanoma cultures by single-cell RNA-seq. Oncotarget. 2017;8(1):846-862. DOI 10.18632/oncotarget.13666.

21. Goldberg A.D., Allis C.D., Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635-638.

22. Grun D., Lyubimova A., Kester L., Wiebrands K., Basak O., Sasaki N., Clevers H., Oudenaarden A. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525(7568):251-255. DOI 10.1038/nature14966.

23. Hafner M., Landgraf P., Ludwig J., Rice A., Ojo T., Lin C., Holoch D., Lim C., Tuschl T. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods. 2008;44(1):3-12.

24. Haghverdi L., Büttner M., Wolf F.A., Buettner F., Theis F.J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods. 2016;13:845-848.

25. Ham R.G. Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proc. Natl. Acad. Sci. USA. 1965;53:288-293.

26. Haque A., Engel J., Teichmann S.A., Lonnberg T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017;9:75.

27. Hashimshony T., Senderovich N., Avital G., Klochendler A., Leeuw Y., Anavy L., Gennert D., Li S., Livak K.J., Rozenblatt-Rosen O., Dor Y., Regev A., Yanai I. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 2016;17:77. DOI 10.1186/s13059-016-0938-8.

28. Hashimshony T., Wagner F., Sher N., Yanai I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012;2(3): 666-673. DOI 10.1016/j.celrep.2012.08.003.

29. Hwang B., Lee J.H., Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 2018;50:96.

30. Islam S., Zeisel A., Joost S., Manno G.L., Zajac P., Kasper M., Lonnerberg P., Linnarsson S. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods. 2014;11(2):163-166. DOI 10.1038/nmeth.2772.

31. Jaitin D.A., Kenigsberg E., Keren-Shaul H., Elefant N., Paul F., Zaretsky I., Mildner A., Cohen N., Jung S., Tanay A., Amit I. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014;343(6172):776-779. DOI 10.1126/science.1247651.

32. Jaitin D.A., Weiner A., Yofe I., Lara-Astiaso D., Kern-Shaul H., David E., Salame T.M., Tanay A., Oudenaarden A., Amit I. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell. 2016;167(7):1883-1896. DOI 10.1016/j.cell.2016.11.039.

33. Janes K.A., Wang C.C., Holmberg K.J., Cabral K., Brugge J.S. Identifying single-cell molecular programs by stochastic profiling. Nat. Methods. 2010;7(4):311-317. DOI 10.1038/nmeth.1442.

34. Jiang L., Schlesinger F., Davis C.A., Zhang Y., Li R., Salit M., Gingeras T.R., Oliver B. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 2011;21:1543-1551.

35. Junker J.P., Oudenaarden A. Every cell is special: genome-wide studies add a new dimension to single-cell biology. Cell. 2014;157(1):8-11. DOI 10.1016/j.cell.2014.02.010.

36. Kalhor R., Mali P., Church G.M. Rapidly evolving homing CRISPR barcodes. Nat. Methods. 2017;14(2):195-200. DOI 10.1038/nmeth.4108.

37. Kamme F., Salunga R., Yu J., Tran D.T., Zhu J., Luo L., Bittner A., Guo H.Q., Miller N., Wan J., Erlander M. Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J. Neurosci. 2003;23(9):3607-3615.

38. Klein A.M., Mazutis L., Akartuna I., Tallapragada N., Veres A., Li V., Peshkin L., Weitz D.A., Kirschner M.W. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187-1201. DOI 10.1016/j.cell.2015.04.044.

39. Kolodziejczyk A.A., Kim J.K., Svensson V., Marioni J.C., Teichmann S.A. The technology and biology of single-cell RNA sequencing. Mol. Cell. 2015;58(4):610-620. DOI 10.1016/j.molcel.2015.04.005.

40. Kumar P., Tan Y., Cahan P. Understanding development and stem cells using single cell-based analyses of gene expression. Development. 2017;144:17-32. DOI 10.1242/dev.133058.

41. Landry Z.C., Giovanonni S.J., Quake S.R., Blainey P.C. Optofluidic cell selection from complex microbial communities for single-genome analysis. Methods Enzymol. 2013;531:61-90. DOI 10.1016/B978-0-12-407863-5.00004-6.

42. Lavin Y., Kobayashi S., Leader A., Amir E.D., Elefant N., Bigenwald C., Remark R., Sweeney R., Becker C.D., Levine J.H., Meinhof K., Chow A., Kim-Shulze S., Wolf A., Medaglia C., Li H., Rytlewski J.A., Emerson R.O., Merad M. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell. 2017;169(4):750-765.e17. DOI 10.1016/j.cell.2017.04.014.

43. Leung M.L., Davis A., Gao R., Casasent A., Wang Y., Sei E., Vilar E., Maru D., Kopetz S., Navin N.E. Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal cancer. Genome Res. 2017;27(8):1287-1299. DOI 10.1101/gr.209973.116.

44. Li B., Ruotti V., Stewart R.M., Thomson J.A., Dewey C.N. RNA-seq gene expression estimation with read mapping uncertainty. Bioinformatics. 2010;26:493-500.

45. Li H., Courtois E.T., Sengupta D., Tan Y., Chen K.H., Goh J.J.L., Kong S.L., Chua C., Hon L.K., Tan W.S., Wong M., Choi P.J., Wee L.J.K., Hillmer A.M., Tan I.B., Robson P., Prabhakar S. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet. 2017; 49:708-718.

46. Li J., Witten D.M., Johnstone I.M., Tibshirani R. Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics. 2012;13:523-538.

47. Lindström S., Andersson-Svahn H. Overview of single-cell analyses: microdevices and applications. Lab. Chip. 2010;10(24):3363-3372. DOI 10.1039/c0lc00150c.

48. Liu L., Li Y., Li S., Hu N., He Y., Pong R., Lin D., Lu L., Law M. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 2012;2012:251364. DOI 10.1155/2012/251364.

49. Ludwig L.S., Lareau C.A., Ulirsch J.C., Christian E., Muus C., Li L.H., Pelka K., Ge W., Oren Y., Brack A., Law T., Rodman C., Chen J.H., Boland G.M., Hacohen N., Rozenblatt-Rosen O., Aryee M.J., Buenrostro J.D., Regev A., Sankaran V.G. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell. 2019;176(6);1325-1339. DOI 10.1016/j.cell.2019.01.022.

50. Lun A.T.L., Bach K., Marioni J.C. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016;17:75. DOI 10.1186/s13059-016-0947-7.

51. Maaten L. van der, Hinton G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008;9: 2579-2605.

52. Macosko E.Z., Basu A., Satija R., Nemesh J., Shekhar K., Goldman M., Tirosh I., Bialas A.R., Kamitaki N., Martersteck E.M., Trombetta J.J., Weitz D.A., Sanes J.R., Shalek A.K., Regev A., McCarroll S.A. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202-1214. DOI 10.1016/j.cell.2015.05.002.

53. Mahata B., Zhang X., Kolodziejczyk A.A., Proserpio V., Haim-Vilmovsky L., Taylor A.E., Hebenstreit D., Dingler F.A., Moignard V., Gottgens B., Arlt W., McKenzie A.N.J., Teichmann S.A. Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep. 2014;7(4):11301142. DOI 10.1016/j.celrep.2014.04.011.

54. Marcus J.S., Anderson W.F., Quake S.R. Microfluidic single-cell mRNA isolation and analysis. Anal. Chem. 2006;78(9):3084-3089.

55. Mazutis L., Gilbert J., Ung W.L., Weitz D.A., Griffiths A.D., Heyman J.A. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 2013;8(5):870-891. DOI 10.1038/nprot.2013.046.

56. McKenna A., Findlay G.M., Gagnon J.A., Horwitz M.S., Schier A.F., Shendure J. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science. 2016;353(6298):aaf7907. DOI 10.1126/science.aaf7907.

57. Mi D., Li Z., Lim L., Li M., Moissidis M., Yang Y., Gao T., Hu T.X., Pratt T., Price D.J., Sestan N., Marin O. Early emergence of cortical interneuron diversity in the mouse embryo. Science. 2018;360 (6384):81-85. DOI 10.1126/science.aar6821.

58. Moon K.R., Dijk D., Wang Z., Burkhardt D., Chen W.S., Yim K., Elen A., Hirn M.J., Coifman R.R., Ivanova N.B., Wolf G., Krishnaswamy S. Visualizing structure and transitions for biological data exploration. Cell. 2018;65. http://dx.doi.org/10.2139/ssrn.3155891. Moroz L.L. NeuroSystematics and periodic system of neurons: model vs reference species at single-cell resolution. ACS Chem. Neurosci. 2018;9:1884-1903. DOI 10.1021/acschemneuro.8b00100.

59. Moroz L.L., Edwards J.R., Puthanveettil S.V., Kohn A.B., Ha T., Heyland A., Knudsen B., Sahni A., Yu F., Liu L., Jezzini S., Lovell P., Iannucculli W., Chen M., Nguyen T., Sheng H., Shaw R., Kalachikov S., Panchin Y.V., Farmerie W., Russo J.J., Ju J., Kandel E.R. Neuronal transcriptome of Aplysia: neuronal compartments and circuitry. Cell. 2006;127(7):1453-1467.

60. Mortazavi A., Williams B.A., McCue K., Schaeffer L., Wold B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods. 2008;5:621-628.

61. Nagano T., Lubling Y., Stevens T.J., Schoenfelder S., Yaffe E., Dean W., Laue E.D., Tanay A., Fraser P. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 2013;502(7469):59-64. DOI 10.1038/nature12593.

62. Nagano T., Lubling Y., Varnai C., Dudley C., Leung W., Baran Y., Cohen N.M., Wingett S., Fraser P., Tanay A. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature. 2017; 547(7661):61-67. DOI 10.1038/nature23001.

63. Navin N., Kendall J., Troge J., Andrews P., Rodgers L., McIndoo J., Cook K., Stepansky A., Levy D., Esposito D., Muthuswamy L., Krasnitz A., McCombie W.R., Hicks J., Wingler M. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341): 90-94. DOI 10.1038/nature09807.

64. Nikolenko S.I., Korobeynikov A.I., Alekseyev M.A. BayesHammer: Bayesian clustering for error correction in single-cell sequencing. BMC Genomics. 2013;14(Suppl. 1):S7. DOI 10.1186/1471-216414-S1-S7.

65. Nowogrodzki A. The cell seeker. Nature. 2017;547:24-26.

66. Okaty B.W., Freret M.E., Rood B.D., Brust R.D., Hennessy M.L., Bairos D., Kim J.C., Cook M.N., Dymecki S.M. Multi-scale molecular deconstruction of the serotonin neuron system. Neuron. 2015; 88(4):774-791. DOI 10.1016/j.neuron.2015.10.007.

67. Parekh S., Ziegenhain C., Vieth B., Enard W., Hellmann I. zUMIs – A fast and flexible pipeline to process RNA sequencing data with UMIs. GigaScience. 2018;7(6). DOI 10.1093/gigascience/giy059.

68. Pierson E., Yau C., ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 2015;16:241. DOI 10.1186/s13059-015-0805-z.

69. Pijuan-Sala B., Griffiths J.A., Guibentif C., Hiscock T.W., Jawaid W., Calero-Nieto F.J., Mulas C., Ibarra-Soria X., Tyser R.C.V., Ho D.L.L., Reik W., Srinivas S., Simons B.D., Nihols J., Marioni J.C., Gottgens B. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature. 2019;566;490-495. DOI 10.1038/s41586-019-0933-9.

70. Poulin J.F., Tasic B., Hjerling-Leffler J., Trimarchi J.M., Awatramani R. Disentangling neural cell diversity using single-cell transcriptomics. Nat. Neurosci. 2016;19(9):1131-1141. DOI 10.1038/nn.4366.

71. Qiu X., Mao Q., Tang Y., Wang L., Chawla R., Pliner H., Trapnell C. Reversed graph embedding resolves complex single-cell developmental trajectories. Nat. Methods. 2017;14(10):979-982. DOI 10.1038/nmeth.4402.

72. Ramsköld D., Luo S., Wang Y.C., Li R., Deng Q., Faridani O.R., Daniels G.A., Khrebtukova I., Loring J.F., Laurent L.C., Schroth G.P., Sandberg R. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 2012; 30(8):777-782.

73. Robinson M.D., Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010; 11:R25. DOI 10.1186/gb-2010-11-3-r25.

74. Rotem A., Ram O., Shoresh N., Sperling R.A., Goren A., Weitz D.A., Bernstein B.E. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 2015;33(11):1165-1172. DOI 10.1038/nbt.3383.

75. Salafi T., Zeming K.K., Zhang Y. Advancements in microfluidics for nanoparticle separation. Lab. Chip. 2016;17(1):11-33.

76. Saliba A.E., Westermann A.J., Gorski S.A., Vogel J. Single-cell RNAseq: advances and future challenges. Nucleic Acids Res. 2014; 42(14):8845-8860. DOI 10.1093/nar/gku555.

77. Sassagawa Y., Danno H., Takada H., Ebisawa M., Tanaka K., Hayashi T., Kurisaki A., Nikaido I. Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads. Genome Biol. 2018;19:29. DOI 10.1186/s13059018-1407-3.

78. Schwartz S., Agarwala S.D., Mumbach M.R., Jovanovic M., Mertins P., Shishkin A., Tabach Y., Mikkelsen T.S., Satija R., Ruvkun G., Carr S.A., Lander E.S., Fink G.R., Regev A. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell. 2013;155(6):1409-1421. DOI 10.1016/j.cell.2013.10.047.

79. Segal E., Friedman N., Koller D., Regev A. A module map showing conditional activity of expression modules in cancer. Nat. Genet. 2004;36(10):1090-1098.

80. Segerstolpe A., Palasantza A., Eliasson P., Andersson E.M., Andreasson A.C., Sun X., Picelli S., Sabirsh A., Clausen M., Bjursell M.K., Smith D.M., Kasper M., Ammala C., Sandberg R. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 2016;24:593-607. DOI 10.1016/j.cmet.2016.08.020.

81. Shalek A.K., Satija R., Adiconis X., Gertner R.S., Gaublomme J.T., Raychowdhury R., Schwartz S., Yosef N., Malboeuf C., Lu D., Trombetta J.J., Gennert D., Gnirke A., Goren A., Hacohen N., Levin J.Z., Park H., Regev A. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature. 2013; 498(7453):236-240. DOI 10.1038/nature12172.

82. Soumillon M., Cacchiarelli D., Semrau S., van Oudenaarden A., Mikkelsen T.S. Characterization of directed differentiation by high-throughput single-cell RNA-seq. bioRxiv. 2014. DOI 10.1101/003236.

83. Stegle O., Teichmann S.A., Marioni J.C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 2015;16(3):133-145. DOI 10.1038/nrg3833.

84. Stevens T.J., Lando D., Basu S., Atkinson L.P., Cao Y., Lee S.F., Leeb M., Wohlfahrt K.J., Boucher W., O’Shaughnessy-Kirwan A., Cramard J., Faure A.J., Ralser M., Blanco E., Morey L., Sanso M., Palayret M.G.S., Lehner B., Croce L.D., Wutz A., Hendrich B., Klenerman D., Laue E.D. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature. 2017;544(7648):59-64. DOI 10.1038/nature21429.

85. Subkhankulova T., Gilchrist M.J., Livesey F.J. Modelling and measuring single cell RNA expression levels find considerable transcriptional differences among phenotypically identical cells. BMC Genomics. 2008;9:268. DOI 10.1186/1471-2164-9-268.

86. Tang F., Barbacioru C., Wang Y., Nordman E., Lee C., Xu N., Wang X., Bodeau J., Tuch B.B., Siddiqui A., Lao K., Surani M.A. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods. 2009; 6(5):377-382. DOI 10.1038/nmeth.1315. Epub 2009 Apr 6.

87. Taylor D.M., Aronow B.J. The pediatric cell atlas: defining the growth phase of human development at single-cell resolution. Dev. Cell. 2019;49. DOI 10.1016/j.devcel.2019.03.001.

88. Tian L., Su S., Dong X., Amann-Zalcenstein D., Biben C., Seidi A., Hilton D.J., Naik S.H., Ritchie M.E. scPipe: a flexible R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data. PLoS Comput. Biol. 2018;14(8):e100636. DOI 10.1371/journal.pcbi.1006361.

89. Tirosh I., Izar B., Prakadan S.M., Wadsworth M.H., Treacy D., Trombetta J.J., Rotem A., Rodman C., Lian C., Murphy G., Fallahi-Sichani M., Dutton-Regester K., Lin J.-R., Cohen O., Shah P., Lu D., Genshaft A.S., Hughes T.K., Ziegler C.G.K., Kazer S.W., Gaillard A., Kolb K.E., Villani A.C., Johannessen C.M., Andreev A.Y., Allen E.M.V., Bertagnolli M., Sorger P.K., Sullivan R.J., Flaherty K.T., Frederick D.T., Jane-Valbuena J., Yoon C.H., Rozenblatt-Rosen O., Shalek A.K., Regev A., Garraway L.A. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352(6282):189-196. DOI 10.1126/science.aad0501.

90. Tokunaga T., Hirose O., Kawaguchi S., Toyoshima Y., Teramoto T., Ikebata H., Kuge S., Ishihara T., Iino Y., Yoshida R. Automated detection and tracking of many cells by using 4D live-cell imaging data. Bioinformatics. 2014;30:43-51.

91. Trapnell C., Cacchiarelli D., Grimsby J., Pokharel P., Li S., Morse M., Lennon N.J., Livak K.J., Mikkelsen T.S., Rinn J.L. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 2014;32(4):381-386. DOI 10.1038/nbt.2859.

92. Treutlein B., Brownfield D.G., Wu A.R., Neff N., Mantalas G.L., Espinoza F.H., Desai T.J., Krasnow M.A., Quake S.R. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509(7500):371-375. DOI 10.1038/nature13173.

93. Valihrach L., Androvic P., Kubista M. Platforms for single-cell collection and analysis. Int. J. Mol. Sci. 2018;19:807.

94. Wang J., Song Y. Single cell sequencing: a distinct new field. Clin. Transl. Med. 2017;6(1):10. DOI 10.1186/s40169-017-0139-4.

95. Wang Y., Navin N.E. Advances and applications of single-cell sequencing technologies. Mol. Cell. 2015;58(4):598-609. DOI 10.1016/j.molcel.2015.05.005.

96. Whitesides G.M. The origins and the future of microfluidics. Nature. 2006;442(7101):368-373.

97. Wolf F.A., Angerer P., Theis F.J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19(1):15. DOI 10.1186/s13059-017-1382-0.

98. Yu P., Lin W. Single-cell transcriptome study as big data. Genom. Proteom. Bioinf. 2016;14:21-30.

99. Zeisel A., Munoz-Manchado A.B., Codeluppi S., Lonnerberg P., Manno G., Jureus A., Margues S., Munguba H., He L., Betsholtz C., Rolny C., Castelo-Branco G., Hjerling-Leffler J., Linnarsson S. Cell types in the mouse cortex and hippocampus revealed by singlecell RNA-seq. Science. 2015;347(6226):1138-1142. DOI 10.1126/science.aaa1934.

100. Zhao C., Hu S., Huo X., Zhang Y. Dr.seq2: a quality control and analysis pipeline for parallel single cell transcriptome and epigenome data. PLoS One. 2017;12(7):e0180583. DOI 10.1371/journal.pone.0180583.

101. Zheng G.X., Terry J.M., Belgrader P., Ryvkin P., Bent Z.W., Wilson R., Ziraldo S.B., Wheeler T.D., McDermott G.P., Zhu J., Gregory M.T., Shuga J., Montesclaros L., Underwood J.G., Masquelier D.A.,

102. Nishimura S.Y., Schnall-Levin M., Wyatt P.W., Hindson C.M., Bharadwaj R., Wong A., Ness K.D., Beppu L.W., Deeg H.J., McFarland C., Loeb K.R., Valente W.J., Ericson N.G., Stevens E.A., Radich J.P., Mikkelsen T.S., Hindson B.J., Bielas J.H. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 2017;8:14049. DOI 10.1038/ncomms14049.

103. Ziegenhain C., Vieth B., Parekh S., Reinius B., Guillaumet-Adkins A., Smets M., Leonhardt H., Heyn H., Hellmann I., Enard W. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell. 2017;65:631-643. DOI 10.1015/j.molcel.2017.01.023.


Просмотров: 141


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)