Resistance mechanisms involved in complex immunity of wheat against rust diseases
https://doi.org/10.18699/VJ19.523
Abstract
The review is devoted to the disclosure of the modern concept of plant immunity as a hierarchical system of plant host protection, controlled by combinations of major and minor resistance genes (loci). The “zigzag” model is described in detail for discussing the molecular bases of plant immunity with key concepts: pathogen-associated molecular patterns triggering innate immunity, ambivalent effectors causing susceptibility, but when interacting with resistance genes, a hypersensitive reaction or alternative defense mechanisms. There are three types of resistance in cereals: (1) basal resistance provided by plasma membrane-localized receptors proteins; (2) racespecific resistance provided by intracellular immune R-receptors; (3) partial resistance conferred by quantitative gene loci. The system ‘wheat (Triticum aestivum) – the fungus causing leaf rust (Puccinia triticina)’ is an interesting model for observing all the resistance mechanisms listed above, since the strategy of this pathogen is aimed at the constitutive use of host resources. The review focuses on known wheat genes responsible for various types of resistance to leaf rust: race-specific genes Lr1, Lr10, Lr19, and Lr21; adult resistance genes which are hypersensitive Lr12, Lr13, Lr22a, Lr22b, Lr35, Lr48, and Lr49; nonhypersensitive genes conferring partial resistance Lr34, Lr46, Lr67, and Lr77. The involvement of some wheat R-genes in pre-haustorial resistance to leaf rust has been discovered recently: Lr1, Lr3a, Lr9, LrB, Lr19, Lr21, Lr38. The presence of these genes in the genotype ensures the interruption of early pathogenesis through the following mechanisms: disorientation and branching of the germ tube; formation of aberrant fungal penetration structures (appressorium, substomatal vesicle); accumulation of callose in mesophyll cell walls. Breeding for immunity is accelerated by implementation of data on various mechanisms of wheat resistance to rust diseases, which are summarized in this review.
Keywords
About the Authors
E. S. SkolotnevaRussian Federation
Novosibirsk
E. A. Salina
Russian Federation
Novosibirsk
References
1. Vavilov N.I. The theory of plant immunity to infectious diseases. In: Theoretical Bases of Plant Breeding. Vol. 1. Moscow; Leningrad, 1935;893-900. (in Russian)
2. Van der Plank J.E. Disease Resistance in Plants. New York: Acad. Press, 1968. (Russ. ed.: Vanderplank J.E. Ustoychivost’ Rasteniy k Boleznyam. Moscow: Kolos Publ., 1972. (in Russian))
3. Gorlenko M.B. Agricultural Plant Pathology. Moscow: Vysshaya Shkola Publ., 1968. (in Russian)
4. Diakov Yu.T. Population Biology of Phytopathogenic Fungi. Moscow: Muravey Publ., 1998. (in Russian)
5. Diakov Yu.T. Towards the general theory of immunity. Zhurnal Obshchey Biologii = Journal of General Biology. 2005;66(6):451-458. (in Russian)
6. Diakov Yu.T. Plant Disease Resistance. Moscow: INFA-M Publ., 2017. (in Russian)
7. Mikhaylova L.A. Genetics of wheat resistance to brown rust. In: Identified Plant Gene Pool and Breeding. St. Petersburg: VIR Publ., 2005;513-526. (in Russian)
8. Odintsova I.G., Shelomova L.F. Horizontal resistance: genetics and breachability by parasites. In: Variability of Pathogenic Microorganisms. Moscow: Kolos Publ., 1983;51-60. (in Russian)
9. Plotnikova L.Ya. The involvement of reactive oxygen species in defense of wheat lines with the genes introgressed from Agropyron species contributing the resistance against brown rust. Russ. J. Plant Physiol. 2009;56(2):181-189. DOI 10.1134/S102144370902006X.
10. Pozherukova V.E., Plotnikova L.Ya., Degtyarev A.I. Timofeevi wheat resistance to leaf rust is determined by generation of reactive oxygen species and inhibition of Puccinia triticina fungus haustoria development. Fundamentalnye Issledovaniya = Fundamental Research. 2015;2(2):285-292. (in Russian)
11. Atienza S.G., Jafary H., Niks R.E. Accumulation of genes for susceptibility to rust fungi for which barley is nearly a nonhost results in two barley lines with extreme multiple susceptibility. Planta. 2004; 220:71-79.
12. Ayliffe M., Jin Y., Kang Z., Persson M., Steffenson B., Wang S., Leung H. Determining the basis of nonhost resistance in rice to cereal rusts. Euphytica. 2011;179:33-40. DOI 10.1007/s10681-010-0280-2.
13. Ayliffe M., Singh R., Lagudah E. Durable resistance to wheat stem rust needed. Curr. Opin. Plant Biol. 2008;11:187-192.
14. Bozkurt T.O., McGrann G.R.D., MacCormack R., Boyd L.A., Akkaya M.S. Cellular and transcriptional responses of wheat during compatible and incompatible race-specific interactions with Puccinia striiformis f. sp. tritici. Mol. Plant Pathol. 2010;11:625-640. DOI 10.1111/j.1364-3703.2010.00633.x.
15. Brueggeman R., Rostoks N., Kudrna D., Kilian A., Han F., Chen J., Druka A., Steffenson B., Kleinhofs A. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc. Natl. Acad. Sci. USA. 2002;9(14):93289333. DOI 10.1073/pnas.142284999.
16. Caldwell R.M. Breeding for general and specific plant disease resistance. Proc. 3rd Int. Wheat Genetic Symp. Australia. 1968;263-272. Cloutier S., McCallum B.D., Loutre C., Banks T.W., Wicker T., Feuillet C., Keller B., Jordan M.C. Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol. Biol. 2007;65:93-106.
17. Collinge D.B., Jørgensen H.J.L., Lund O.S., Lyngkjær M.F. Engineering pathogen resistance in crop plants: current trends and future prospects. Annu. Rev. Phytopathol. 2010;48:269-291.
18. Cook D.E., Mesarich C.H., Thomma B.P.H.J. Understanding plant immunity as a surveillance system to detect invasion. Annu. Rev. Phytopathol. 2015;53:541-563.
19. Dangle J.L., Jones J.D.G. Plant pathogens and integrated defense responses to infection. Nature. 2001;411:826-833.
20. Dodds P.N., Rathjen J.P. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 2010;11:539-548.
21. Dyck P.L. The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome. 1987;29:467-469.
22. Ellis J.G., Lagudah E.S., Spielmeyer W., Dodds P.N. The past, present and future of breeding rust resistant wheat. Front. Plant Sci. 2014;5: 641. DOI 10.3389/fpls.2014.00641.
23. Feuillet C., Schachermayr G., Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J. 1997;11(1):45-52.
24. Feuillet C., Travella S., Stein N., Albar L., Nublat A., Keller B. Mapbased isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc. Natl. Acad. Sci. USA. 2003;100:15253-15258.
25. Flor H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971;9:275-296.
26. Gennaro A., Koebner R.M.D., Ceoloni C. A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat. Funct. Integr. Genomics. 2009;9:325-334. DOI 10.1007/s10142-009-0115-1.
27. Gou J.Y., Li K., Wu K., Wang X., Lin H., Cantu D., Uauy C., DobonAlonso A., Midorikawa T., Inoue K., Sánchez J., Fu D., Blechl A., Wallington E., Fahima T., Meeta M., Epstein L., Dubcovsky J. Wheat stripe rust resistance protein WKS1 reduces the ability of the thylakoid-associated ascorbate peroxidase to detoxify reactive oxygen species. Plant Cell. 2015;27:1755-1770.
28. Graichen F.A.S., Martinelli J.A., Federizzi L.C., Chaves M.S. Epidemiological and histological components of crown rust resistance in oat genotypes. Eur. J. Plant Pathol. 2011;131:497-510.
29. Hamilton E.S., Jensen G.S., Maksaev G., Katims A., Sherp A.M., Haswell E.S. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science. 2015;350(6259): 438-441. DOI 10.1126/science.aac6014.
30. Heath M.C. Cellular interactions between biotrophic fungal pathogens and host or nonhost plants. Can. J. Plant Pathol. 2002;24:259-264. DOI 10.1080/07060660209507007.
31. Herrera-Foessel S.A., Singh R.P., Lillemo M., Huerta-Espino J., Bhavani S., Singh S., Lan C., Calvo-Salazar V., Lagudah E.S. Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theor. Appl. Genet. 2014;127:781-789.
32. Hogenhout S.A., Van der Hoorn R.A., Terauchi R., Kamoun S. Emerging concepts in effector biology of plant-associated organisms. Mol. Plant Microbe Interact. 2009;22(2):115-122. DOI 10.1094/MPMI22-2-0115.
33. Hu G.G., Rijkenberg F.H.J. Ultrastructural studies of the intercellular hyphae and haustorium of Puccinia recondita f. sp. tritici. J. Phytopathol. 1998;146:39-50.
34. Huang L., Brooks S.A., Li W., Fellers J.P., Trick H.N., Gill B.S. Mapbased cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics. 2003;164:655-664.
35. Huang L., Brooks S.A., Li W., Fellers J.P., Nelson J.C., Gill B.S. Evolution of new disease specificity at a simple resistance locus in a crop – weed complex: reconstitution of the Lr21 gene in wheat. Genetics. 2009:182;595-602.
36. Jones J.D., Dangl J.L. The plant immune system. Nature. 2006;444: 323-329. DOI 10.1038/nature05286.
37. Jonson R. Durable resistance: definition of, genetic control, and attainment in plant breeding. Phytopathology. 1981;71:567-568.
38. Kang Y.J., Kim K.H., Shim S., Yoon M.Y., Sun S., Kim M.Y., Van K., Lee S.H. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol. 2012; 12:139.
39. Kolmer J.A., Su Z., Bernardo A., Bai G., Chao S. Mapping and characterization of the new adult plant leaf rust resistance gene Lr77 derived from Santa Fe winter wheat. Theor. Appl. Genet. 2018;131:15531560. DOI 10.1007/s00122-018-3097-3.
40. Krattinger S.G., Keller B. Molecular genetics and evolution of disease resistance in cereals. New Phytol. 2016;212:320-332.
41. Krattinger S.G., Lagudah E.S., Spielmeyer W., Singh R.P., Huerta-Espino J., McFadden H., Bossolini E., Selter L.L., Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science. 2009;323:1360-1363.
42. Lagudah E.S. Molecular genetics of race non-specific rust resistance in wheat. Euphytica. 2011;179:81-91.
43. Lawrence G.J., Dodds P.N., Ellis J.G. Transformation of the flax rust fungus, Melampsora lini: selection via silencing of an avirulence gene. Plant J. 2010;61:364-369. DOI 10.1111/j.1365-313X.2009.04052.x.
44. Leonard K.J., Szabo L.J. Stem rust of small grains and grasses caused by Puccinia graminis. Mol. Plant Pathol. 2005;6:99-111.
45. Marone D., Russo M.A., Laidò G., Leonardis A.M., Mastrangelo A.M. Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses. Int. J. Mol. Sci. 2013; 14(4):7302-7326.
46. McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers W.J., Morris C., Appels R., Devos K.M. Catalogue of gene symbols for wheat. KOMUGI Integrated Wheat Science Database. 2014. Available at http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp
47. Michelmore R.W., Meyers B.C. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 1998;8:1113-1130.
48. Moldenhauer J., Moerschbacher B.M., van der Westhuizen A.J. Histological investigation of stripe rust (Puccinia striiformis f. sp. tritici) development in resistant and susceptible wheat cultivars. Plant Pathol. 2006;55(4):469-474. DOI 10.1111/j.1365-3059.2006.01385.x.
49. Moore J.W., Herrera-Foessel S., Lan C., Schnippenkoetter W., Ayliffe M., Huerta-Espino J., Lillemo M., Viccars L., Milne R., Periyannan S., Kong X., Spielmeyer W., Talbot M., Bariana H., Patrick J.W., Dodds P., Singh R., Lagudah E. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 2015;47:1494-1498.
50. Niks R.E. Haustorium formation by Puccinia hordei in leaves of hypersensitive, partially resistant, and nonhost plant genotypes. Phytopathology. 1983;73:64-66.
51. Niks R.E., Marcel T.C. Nonhost and basal resistance: how to explain specificity? New Phytol. 2009;182:817-828.
52. Niks R.E., Qi X., Marcel T.C. Quantitative resistance to biotrophic filamentous plant pathogens: concepts, misconceptions, and mechanisms. Annu. Rev. Phytopathol. 2015;53:445-470.
53. Nürnberger T., Kemmerling B. Pathogen-associated molecular patterns (PAMP) and PAMP-triggered immunity. Annu. Plant Rev. 2009;34: 16-47.
54. Park R.F., McIntosh R.A. Adult plant resistances to Puccinia recondite f. sp. tritici in wheat. N. Z. J. Crop Hortic. Sci. 1994;22:151-158. Parlevliet J.E., Zadoks J.C. The integrate concept disease resistance: a new view including horizontal and vertical resistance in plants. Euphytica. 1977;26:5-21.
55. Proietti S., Bertini L., Van der Ent S., Leon-Reyes A., Pieterse C.M.J., Tucci M., Caporale C., Caruso C. Cross activity of orthologous WRKY transcription factors in wheat and Arabidopsis. J. Exp. Bot. 2011;62(6):1975-1990. DOI 10.1093/jxb/erq396.
56. Schulze‐Lefert P., Panstruga R. A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci. 2011;16:117-125.
57. Shang J., Tao Y., Chen X., Zou Y., Lei C., Wang J., Li X., Zhao X., Zhang M., Lu Z., Xu J., Cheng Z., Wan J., Zhu L. Identification of a new rice blast resistance gene, Pid3, by genome wide comparison of paired nucleotide-binding site leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics. 2009;182:1303-1311.
58. Singh R.P., Mujeeb-Kazi A., Huerta-Espino J. Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology. 1998; 88:890-894.
59. Singh R.P., Nelson J.C., Sorrells M.E. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci. 2000;40:1148-1155.
60. Singh R.P., Rajaram S. Resistance to Puccinia recondita f. sp. tritici in 50 Mexican bread wheat cultivars. Crop Sci. 1991;31:1472-1479.
61. Thomma B.P.H.J., Nurnberger T., Joosten M.H.A.J. Of PAMPs and effectors: the blurred PTI–ETI dichotomy. Plant Cell. 2011;23: 4-15.
62. Upadhyaya N.M., Mago R., Staskawicz B.J., Ayliffe M.A., Ellis J.G., Dodds P.N. A bacterial type III secretion assay for delivery of fungal effector proteins in to wheat. Mol. Plant Microbe Interact. 2014; 27:255-264.
63. van Ooijen G., Mayr G., Kasiem M.M., Albrecht M., Cornelissen B.J., Takken F.L. Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. J. Exp. Bot. 2008;59(6):1383-1397.
64. Wang X., McCallum B.D., Fetch T., Bakkeren G., Marais G.F., Saville B.J. Comparative microscopic and molecular analysis of Thather near-isogenic lines with wheat rust resistance genes Lr2a, Lr3, LrB or Lr9 upon challenge with different Puccinia triticina races. Plant Pathol. 2013;62:698-707.
65. Wu H., Ni Z., Yao Y., Guo G., Sun Q. Cloning and expression profiles of 15 genes encoding WRKY transcription factors in wheat (Triticum aestivum L.). Prog. Nat. Sci. 2008;18:697-705.
66. Yin C., Hulbert S. Prospects for functional analysis of effectors from cereal rust fungi. Euphytica. 2011;179:57-67.
67. Zhang N., Wang S., Wang H., Liu D. Isolation and characterization of NBS-LRR class resistance homologous gene from wheat. Agric. Sci. China. 2011;10(8):1151-1158. DOI 10.1016/S1671-2927(11)60105-3.