Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Whole genome studies of origin, selection and adaptation of the Russian cattle breeds

https://doi.org/10.18699/VJ19.525

Abstract

Our review presents several recent studies on the genetic history and signatures of selection in genomes of the native Russian cattle breeds. Most of these works are not easily accessible for the Russian-speaking audience. We describe the origins of appearance of the Russian cattle breeds from the genetics perspective. We point to the links between most of the Russian breeds with the taurine breeds of the European origin and for some Russian breeds with the breeds of the Asian origin. We describe major phylogenetic clusters of the Russian breeds and point to those that still maintain their unique genetics, meaning that their preservation is a priority. In addition, we review the results of the search for signatures of selection in genomes of the Russian cattle breeds. Some unique signatures of selection present in the genomes of so-called “turano-mongolian” cattle (i. e. the Yakut cattle) are described which allowed the Yakut cattle to adapt to harsh environments found above the Polar Circle. Signatures of selection which could help other cattle breeds of the Russian origin to adapt to various climatic condition of the Russian Federation are reviewed. The Russian cattle genomes also contain known signatures of selection related to cattle domestication about 8–10 thousand years ago. The most profound ones include genes related to changes of the coat colour. This phenotype in many cases could be related to the distinction of the first domesticated populations and lead to the formation of so-called land races (primitive breeds). Whole-genome association studies of Russian cattle breeds pointed to a novel gene which could be related to the “white-faced” phenotype and to a gene which is related to body temperature support under the acute cold stress. The data presented in our review could be used for identification of genetic markers to focus on in future efforts on designing new highly productive cattle breeds adapted to climates of the Russian Federation and other countries with similar climates.

About the Authors

N. S. Yudin
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


D. M. Larkin
Royal Veterinary College, University of London; Institute of Cytology and Genetics, SB RAS
United Kingdom
London, Novosibirsk


References

1. Davydov V.N. Ecological and genetic bases of the Bos taurus population distribution in the Baikal region. Vestnik Buryatskogo Gosudarstvennogo Universiteta = Bulletin of the Buryat State University. 2012;4:128-129. (in Russian)

2. Dmitriev N.G. Breed Cattle by Countries of the World. Leningrad: Kolos Publ., 1978.

3. Dunin I.M., Dankvert A.G. (Eds.) Breeds and Types of Farm Animals in the Russian Federation. Moscow: All-Russia Research Institute of Animal Breeding, 2013. (in Russian)

4. Zinovieva N.A., Dotsev A.V., Sermyagin A.A., Wimmers K., Reyer H., Sölkner J., Deniskova T.E., Brem G. Study of genetic diversity and population structure of five Russian cattle breeds using whole-genome SNP analysis. Selskokhozyaistvennaya Biologiya = Agricultural Biology. 2016;51(6);788-800. DOI 10.15389/agrobiology.2016.6.788eng.

5. Kolesnik N.N. The Origin of Domesticated Species of the TuranMongolian Group. Moscow, 1936. (in Russian)

6. Kushnir A.V., Glazko V.I. Gray Ukrainian cattle and their closely related forms. Contemporary Problems of Ecology. 2009;3(3):288295. DOI 10.1134/S1995425509030205.

7. Larkin D.M., Yudin N.S. The genomes and history of domestic animals. Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya = Molecular Genetics, Microbiology and Virology. 2016;31(4):197202. DOI 10.3103/S0891416816040054.

8. Moiseeva I.G., Ukhanov S.V., Stolpovsky Yu.A., Sulimova G.E., Kashtanov S.N. Gene Pools of Farm Animals. Moscow: Nauka Publ., 2006. (in Russian)

9. Yudin N.S., Belonogova N.M., Larkin D.M. Genes related to the white face colour pattern in eight Russian cattle breeds. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(2):217-223. DOI 10.18699/VJ18.350 (in Russian)

10. Beynon S.E., Slavov G.T., Farré M., Sunduimijid B., Waddams K., Davies B., Haresign W., Kijas J., MacLeod I.M., Newbold C.J., Davies L., Larkin D.M. Population structure and history of the Welsh sheep breeds determined by whole genome genotyping. BMC Genet. 2015;16:65. DOI 10.1186/s12863-015-0216-x.

11. Boichard D., Brochard M. New phenotypes for new breeding goals in dairy cattle. Animal. 2012;6(4):544-550. DOI 10.1017/S1751731112000018.

12. Bovine HapMap Consortium, Gibbs R.A., Taylor J.F., Van Tassell C.P., Barendse W., Eversole K.A., Gill C.A., Green R.D., Hamernik D.L., Kappes S.M., Lien S., Matukumalli L.K., McEwan J.C., Nazareth L.V., Schnabel R.D., Weinstock G.M., Wheeler D.A., AjmoneMarsan P., Boettcher P.J., Caetano A.R., Garcia J.F., Hanotte O., Mariani P., Skow L.C., Sonstegard T.S., Williams J.L., Diallo B., Hailemariam L., Martinez M.L., Morris C.A., Silva L.O., Spelman R.J., Mulatu W., Zhao K., Abbey C.A., Agaba M., Araujo F.R., Bunch R.J., Burton J., Gorni C., Olivier H., Harrison B.E., Luff B., Machado M.A., Mwakaya J., Plastow G., Sim W., Smith T., Thomas M.B., Valentini A., Williams P., Womack J., Woolliams J.A., Liu Y., Qin X., Worley K.C., Gao C., Jiang H., Moore S.S., Ren Y., Song X.Z., Bustamante C.D., Hernandez R.D., Muzny D.M., Patil S., San Lucas A., Fu Q., Kent M.P., Vega R., Matukumalli A., McWilliam S., Sclep G., Bryc K., Choi J., Gao H., Grefenstette J.J., Murdoch B., Stella A., Villa-Angulo R., Wright M., Aerts J., Jann O., Negrini R., Goddard M.E., Hayes B.J., Bradley D.G., Barbosa da Silva M., Lau L.P., Liu G.E., Lynn D.J., Panzitta F., Dodds K.G. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science. 2009;324(5926):528-532. DOI 10.1126/science.1167936.

13. Buchanan D.S., Lenstra J.A. Breeds of Cattle. In: Garrick D.J., Ruvinsky A. (Eds.) The Genetics of Cattle. 2nd edn. CAB International, 2015;33-66.

14. Cardona A., Pagani L., Antao T., Lawson D.J., Eichstaedt C.A., Yngvadottir B., Shwe M.T., Wee J., Romero I.G., Raj S., Metspalu M., Villems R., Willerslev E., Tyler-Smith C., Malyarchuk B.A., Derenko M.V., Kivisild T. Genome-wide analysis of cold adaptation in indigenous Siberian populations. PLoS One. 2014;9:e98076. DOI 10.1371/journal.pone.0098076.

15. Decker J.E., McKay S.D., Rolf M.M., Kim J., Molina Alcalá A., Sonstegard T.S., Hanotte O., Götherström A., Seabury C.M., Praharani L., Babar M.E., Correia de Almeida Regitano L., Yildiz M.A., Heaton M.P., Liu W.S., Lei C.Z., Reecy J.M., Saif-Ur-Rehman M., Schnabel R.D., Taylor J.F. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet. 2014; 10(3):e1004254. DOI 10.1371/journal.pgen.1004254.

16. Dmitriev N.G., Ernst L.K. Animal genetics resources of the USSR. Food and Agriculture Organization of the United Nations, Rome, Italy. 1989. Available at: http://www.fao.org/docrep/009/ah759e/ah759e00.htm

17. Dorshorst B., Henegar C., Liao X., Sällman Almén M., Rubin C.J., Ito S., Wakamatsu K., Stothard P., Van Doormaal B., Plastow G., Barsh G.S., Andersson L. Dominant red coat color in Holstein cattle is associated with a missense mutation in the Coatomer Protein Complex, Subunit Alpha (COPA) gene. PLoS One. 2015;10(6):e0128969. DOI 10.1371/journal.pone.0128969.

18. Gao Y., Wu H., Wang Y., Liu X., Chen L., Li Q., Cui C., Liu X., Zhang J., Zhang Y. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol. 2017;18(1):13. DOI 10.1186/s13059-016-1144-4.

19. Gaouar S.B., Da Silva A., Ciani E., Kdidi S., Aouissat M., Dhimi L., Lafri M., Maftah A., Mehtar N. Admixture and local breed marginalization threaten Algerian sheep diversity. PLoS One. 2015;10(4): e0122667. DOI 10.1371/journal.pone.0122667.

20. Howard J.T., Kachman S.D., Snelling W.M., Pollak E.J., Ciobanu D.C., Kuehn L.A., Spangler M.L. Beef cattle body temperature during climatic stress: a genome-wide association study. Int. J. Biometeorol. 2014;58(7):1665-1672. DOI 10.1007/s00484-013-0773-5.

21. Igoshin A.V., Yurchenko A.A., Belonogova N.M., Petrovsky D.V., Aitnazarov R.B., Soloshenko V.A., Yudin N.S., Larkin D.M. Genome-wide association study and scan for signatures of selection point to candidate genes for body temperature maintenance under the cold stress in Siberian cattle populations. BMC Genetics. 2019; 20(Suppl.1):26.

22. Islam F., Gopalan V., Lam A.K. RETREG1 (FAM134B): a new player in human diseases: 15 years after the discovery in cancer. J. Cell. Physiol. 2018;233(6):4479-4489. DOI 10.1002/jcp.26384.

23. Iso-Touru T., Tapio M., Vilkki J., Kiseleva T., Ammosov I., Ivanova Z., Popov R., Ozerov M., Kantanen J. Genetic diversity and genomic signatures of selection among cattle breeds from Siberia, eastern and northern Europe. Anim. Genet. 2016;47(6):647-657. DOI 10.1111/age.12473.

24. Jedema H.P., Gold S.J., Gonzalez-Burgos G., Sved A.F., Tobe B.J., Wensel T., Grace A.A. Chronic cold exposure increases RGS7 expression and decreases α2-autoreceptor-mediated inhibition of noradrenergic locus coeruleus neurons. Eur. J. Neurosci. 2008;27(9): 2433-2443.

25. Kantanen J., Edwards C.J., Bradley D.G., Viinalass H., Thessler S., Ivanova Z., Kiselyova T., Cinkulov M., Popov R., Stojanović S., Ammosov I., Vilkki J. Maternal and paternal genealogy of Eurasian taurine cattle (Bos taurus). Heredity (Edinb.). 2009;103(5):404-415. DOI 10.1038/hdy.2009.68.

26. Kassahun Y., Mattiangeli V., Ameni G., Hailu E., Aseffa A., Young D.B., Hewinson R.G., Vordermeier H.M., Bradley D.G. Admixture mapping of tuberculosis and pigmentation-related traits in an AfricanEuropean hybrid cattle population. Front. Genet. 2015;6:210. DOI 10.3389/fgene.2015.00210.

27. Kurth I., Pamminger T., Hennings J.C., Soehendra D., Huebner A.K., Rotthier A., Baets J., Senderek J., Topaloglu H., Farrell S.A., Nürnberg G., Nürnberg P., De Jonghe P., Gal A., Kaether C., Timmerman V., Hübner C.A. Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat. Genet. 2009;41(11):1179-1181. DOI 10.1038/ng.464.

28. Li M.H., Kantanen J. Genetic structure of Eurasian cattle (Bos taurus) based on microsatellites: clarification for their breed classification. Anim. Genet. 2010;41(2):150-158. DOI 10.1111/j.1365-2052.2009.01980.x.

29. Loftus R.T., MacHugh D.E., Bradley D.G., Sharp P.M., Cunningham P. Evidence for two independent domestications of cattle. Proc. Natl. Acad. Sci. USA. 1994;91(7):2757-2761.

30. Mandal N.A., Tran J.T., Saadi A., Rahman A.K., Huynh T.P., Klein W.H., Cho J.H. Expression and localization of CERKL in the mammalian retina, its response to light-stress, and relationship with NeuroD1 gene. Exp. Eye Res. 2013;106:24-33. DOI 10.1016/j.exer. 2012.10.014.

31. Mannen H., Kohno M., Nagata Y., Tsuji S., Bradley D.G., Yeo J.S., Nyamsamba D., Zagdsuren Y., Yokohama M., Nomura K., Amano T. Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle. Mol. Phylogenet. Evol. 2004; 32(2):539-544.

32. Matukumalli L.K., Lawley C.T., Schnabel R.D., Taylor J.F., Allan M.F., Heaton M.P., O’Connell J., Moore S.S., Smith T.P., Sonstegard T.S., Van Tassell C.P. Development and characterization of a high density SNP genotyping assay for cattle. PLoS One. 2009;4(4):e5350. DOI 10.1371/journal.pone.0005350.

33. McKay S.D., Schnabel R.D., Murdoch B.M., Matukumalli L.K., Aerts J., Coppieters W., Crews D., Dias Neto E., Gill C.A., Gao C., Mannen H., Wang Z., Van Tassell C.P., Williams J.L., Taylor J.F., Moore S.S. An assessment of population structure in eight breeds of cattle using a whole genome SNP panel. BMC Genet. 2008;9:37. DOI 10.1186/1471-2156-9-37.

34. Mucha S., Bunger L., Conington J. Genome-wide association study of footrot in Texel sheep. Genet. Sel. Evol. 2015;47:35. DOI 10.1186/s12711-015-0119-3.

35. Pokharel K., Weldenegodguad M., Popov R., Honkatukia M., Huuki H., Lindeberg H., Peippo J., Reilas T., Zarovnyaev S., Kantanen J. Whole blood transcriptome analysis reveals footprints of cattle adaptation to sub-arctic conditions. Anim. Genet. 2019;50(3):217227. DOI 10.1111/age.12783.

36. Sengupta T., Jaryal A.K., Mallick H.N. Effects of NMDA and nonNMDA ionotropic glutamate receptors in the medial preoptic area on body temperature in awake rats. J. Therm. Biol. 2016;61:1-7. DOI 10.1016/j.jtherbio.2016.07.020.

37. Sermyagin A.A., Dotsev A.V., Gladyr E.A., Traspov A.A., Deniskova T.E., Kostyunina O.V., Reyer H., Wimmers K., Barbato M., Paronyan I.A., Plemyashov K.V., Sölkner J., Popov R.G., Brem G., Zinovieva N.A. Whole-genome SNP analysis elucidates the genetic structure of Russian cattle and its relationship with Eurasian taurine breeds. Genet. Sel. Evol. 2018;50(1):37. DOI 10.1186/s12711-018-0408-8.

38. Upadhyay M.R., Chen W., Lenstra J.A., Goderie C.R., MacHugh D.E., Park S.D., Magee D.A., Matassino D., Ciani F., Megens H.J., van Arendonk J.A., Groenen M.A.; European Cattle Genetic Diversity Consortium; RPMA Crooijmans. Genetic origin, admixture and population history of aurochs (Bos primigenius) and primitive European cattle. Heredity. 2017;118(2):169-176. DOI 10.1038/hdy.2016.79.

39. Valverde G., Zhou H., Lippold S., de Filippo C., Tang K., López Herráez D., Li J., Stoneking M. A novel candidate region for genetic adaptation to high altitude in Andean populations. PLoS One. 2015; 10(5):e0125444. DOI 10.1371/journal.pone.0125444.

40. van Binsbergen R., Calus M.P., Bink M.C., van Eeuwijk F.A., Schrooten C., Veerkamp R.F. Genomic prediction using imputed wholegenome sequence data in Holstein Friesian cattle. Genet. Sel. Evol. 2015;47:71. DOI 10.1186/s12711-015-0149-x.

41. Weldenegodguad M., Popov R., Pokharel K., Ammosov I., Ming Y., Ivanova Z., Kantanen J. Whole-genome sequencing of three native cattle breeds originating from the Northernmost cattle farming regions. Front. Genet. 2019;9:728. DOI 10.3389/fgene.2018.00728.

42. Wu S., De Croos J.N., Storey K.B. Cold acclimation-induced up-regulation of the ribosomal protein L7 gene in the freeze tolerant wood frog, Rana sylvatica. Gene. 2008;424(1-2):48-55. DOI 10.1016/j.gene.2008.07.023.

43. Xie L., Jin L., Feng J., Lv J. The expression of AQP5 and UTs in the sweat glands of uremic patients. Biomed. Res. Int. 2017;2017:8629783. DOI 10.1155/2017/8629783.

44. Yeh T.Y., Beiswenger K.K., Li P., Bolin K.E., Lee R.M., Tsao T.S., Murphy A.N., Hevener A.L., Chi N.W. Hypermetabolism, hyperphagia, and reduced adiposity in tankyrase-deficient mice. Diabetes. 2009;58(11):2476-2485. DOI 10.2337/db08-1781.

45. Yudin N.S., Larkin D.M., Ignatieva E.V. A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments. BMC Genet. 2017;18(Suppl.1):111. DOI 10.1186/s12863-017-0580-9.

46. Yurchenko A., Yudin N., Aitnazarov R., Plyusnina A., Brukhin V., Soloshenko V., Lhasaranov B., Popov R., Paronyan I.A., Plemyashov K.V., Larkin D.M. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity (Edinb.). 2018;120(2):125-137. DOI 10.1038/s41437-017-0024-3.

47. Zhang H., Paijmans J.L., Chang F., Wu X., Chen G., Lei C., Yang X., Wei Z., Bradley D.G., Orlando L., O’Connor T., Hofreiter M. Morphological and genetic evidence for early Holocene cattle management in northeastern China. Nat. Commun. 2013;4:2755. DOI 10.1038/ncomms3755.


Review

Views: 1610


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)