MOLECULAR MARKERS IN GENETIC STUDIES AND BREEDING
Abstract
Back in the early decades in Genetics, it became clear that genetic markers may be useful in the analysis of complex traits. However, the low occurrence and a number of other shortcomings hampered wide application of classical genetic markers, and later then protein markers in the breeding. The latest generation of genetic markers (molecular or DNA markers) are characterized by frequent occurrence in the genome, and are based on universal (and hence highly demanded and constantly developing) methods of analysis. This became the key to the rapid development of genetics and breeding areas related to the use of DNA markers. This article provides a brief overview of the main types of molecular markers and the fields of their application.
About the Author
E. K. KhlestkinaRussian Federation
References
1. Алтухов Ю.П., Салменкова Е.А. Полиморфизм ДНК в популяционной генетике // Генетика. 2002. Т. 38. С. 1173–1195.
2. Банникова А.А. Молекулярные маркеры и современная филогенетика млекопитающих // Журн. общей биологии. 2004. Т. 65. С. 278–305.
3. Матвеева Т.В., Павлова О.А., Богомаз Д.И. и др. Молекулярные маркеры для видоидентификации и филогенетики растений // Экол. генетика. 2011. Т. 9. С. 32–43.
4. Серебровский А.С. Генетический анализ. М.: Наука, 1970. 342 с.
5. Смарагдов М.Г. Тотальная геномная селекция с помощью SNP как возможный ускоритель традиционной селекции // Генетика. 2009. Т. 45. С. 725–728.
6. Сулимова Г.Е. ДНК-маркеры в генетических исследованиях: типы маркеров, их свойства и области применения // Усп. соврем. биологии. 2004. Т. 124. С. 260–271.
7. Хлесткина Е.К. Молекулярные методы анализа структурно-функциональной организации генов и геномов высших растений // Вавилов. журн. генет. и селекции. 2011. Т. 15. № 4. С. 757–768.
8. Beckmann J.S., Soller M. Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs // Theor. Appl. Genet. 1983. V. 67. P. 35–43.
9. Botstein D., White R.L., Scolnick M., Davis R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms // Am. J. Hum. Genet. 1980. V. 32. P. 314–331.
10. Burr B., Evola S.V., Burr F.A., Beckmann J.S. The application of restriction fragment length polymorphism to plant breeding / Eds J.K. Setlow et al. Genetic Engineering. N.Y.: Plenum Press, 1983. P. 45–59.
11. Charmet G., Storlie E. Implementation of genome-wide selection in wheat // Вавилов. журн. генет. и селекции. 2012. Т. 16. С. 61–68.
12. European Cereals Genetics Co-operation Newsletter // Proc. of the 15th Intern. EWAC Conf. / Eds A. Börner, B. Kobijlski. Novi Sad, Serbia. 2012. 204 p.
13. Liu Y.G., Tsunewaki K. Restriction fragment length polymorphism (RFLP) analysis in wheat. II. Linkage maps of the RFLP sites in common wheat // Jap. J. Genet. 1991. V. 66. P. 617–634.
14. Martin G.B., Brommonschenkel S.H., Chunwongse J. et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato // Science. 1993. V. 262. P. 1432–1436.
15. Moore G., Devos K.M., Wang Z., Gale M.D. Grasses, line up and form a circle // Curr. Biol. 1995. V. 5. P. 737–739.
16. Moose S.P., Mumm R.H. Molecular plant breeding as the foundation for 21st century crop improvement // Plant Physiol. 2008. V. 147. P. 969–977.
17. Tanksley S.D. Molecular markers in plant breeding // Plant Mol. Biol. Rep. 1983. V. 1. P. 3–8.
18. Tanksley S.D., Nelson J.C. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines // Theor. Appl. Genet. 1996. V. 92. P. 191–203.
19. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers // Nucl. Acids Res. 1989. V. 17. P. 6463–6471.