Association of polymorphism TP53 Arg72Pro with radon-induced lung cancer in the Kazakh population
https://doi.org/10.18699/VJ19.530
Abstract
Lung cancer is a problem of great concern and one of the commonest cancer diseases worldwide and in the Republic of Kazakhstan in particular. Radon exposure is classified as the second most important cause of lung cancer. According to the experts, the contribution of natural sources to the average annual radiation dose of the Kazakh population currently stands at 80 %, including 50 % from radon. However, the effect of radon on human health in the Republic of Kazakhstan is almost unknown. The tumor suppressor gene TP53 is a key mediator of the DNA damage response cascade following cell exposure to ionizing radiation. The common polymorphism TP53 Arg72Pro (rs1042522) is a risk factor for lung cancer in the Asian population, but until now no genetic association studies have been done in the Kazakh population. No information on the synergistic carcinogenic effect of radon exposure and polymorphism TP53 Arg72Pro (rs1042522) is available either. This paper presents the results of the study of association between alteration in the TP53 gene and radon-induced lung cancer risk in the Kazakh population. Genetic association was assessed in a case-control study including 44 radon-exposed patients with lung cancer, 41 patients with lung cancer without radon exposure and 42 age/sex-matched healthy controls. We found that polymorphism TP53 Arg72Pro (rs1042522) was associated with lung cancer risk in the Kazakh population (OR = 6.95, 95 % CI = 2.41–20.05). Individuals with the Arg72Pro genotype also showed a significantly higher risk of radon-induced lung cancer (OR = 8.6, 95 % CI = 2.6–28.59).
About the Authors
O. BulgakovaKazakhstan
Nur-Sultan
A. Kussainova
Kazakhstan
Nur-Sultan
A. Kakabayev
Kazakhstan
Kokshetau
А. Kausbekova
Kazakhstan
Nur-Sultan
R. Bersimbaev
Kazakhstan
References
1. Bersimbaev R., Bulgakova O. The health effects of radon and uranium on the population of Kazakhstan. Genes Environ. 2015;37:18. DOI 10.1186/s41021-015-0019-3.
2. Bersimbaev R., Bulgakova O. Residential radon exposure and lung cancer risk in Kazakhstan. Ed. F. Adrovic. Radon. London, 2017; 93-124. DOI 10.5772/intechopen.71135.
3. Bonner M.R., Bennett W.P., Xiong W., Lan Q., Brownson R.C., Harris C.C., Field R.W., Lubin J.H., Alavanja M.C. Radon, secondhand smoke, glutathione-S-transferase M1 and lung cancer among women. Int. J. Cancer. 2006;119(6):1462-1467.
4. Bulgakova O., Zhabayeva D., Kussainova A., Pulliero A., Izzotti A., Bersimbaev R. miR-19 in blood plasma reflects lung cancer occurrence but is not specifically associated with radon exposure. Oncol. Lett. 2018;15(6):8816-8824.
5. Choi J.R., Koh S.-B., Kim H.R., Lee H., Kang D.R. Radon exposureinduced genetic variations in lung cancers among never smokers. J. Korean Med. Sci. 2018;33(29):e207.
6. Choi J.R., Koh S.-B., Park S.Y., Kim H.R., Lee H., Kang D.R. Novel genetic associations between lung cancer and indoor radon exposure. J. Cancer Prev. 2017;22(4):234-240.
7. Chowdhury M.K., Moniruzzaman M., Emran A.A., Mostafa M.G., Kuddus R.H., Uddin M.A. TP53 codon 72 polymorphisms and lung cancer risk in the Bangladeshi population. Asian. Pac. J. Cancer Prev. 2015;16(8):3493-3498.
8. Deben C., Deschoolmeester V., Lardon F., Rolfo C., Pauwels P. TP53 and MDM2 genetic alterations in non-small cell lung cancer. Evaluating their prognostic and predictive value. Crit. Rev. Oncol. Hematol. 2016;99:63-73.
9. Druzhinin V.G., Sinitsky M.Y., Larionov A.V., Volobaev V.P., Minina V.I., Golovina T.A. Assessing the level of chromosome aberrations in peripheral blood lymphocytes in long-term resident children under conditions of high exposure to radon and its decay products. Mutagenesis. 2015;30(5):677-683.
10. Francisco G., Menezes P.R., Eluf-Neto J., Chammas R. Arg72Pro TP53 polymorphism and cancer susceptibility. a comprehensive metaanalysis of 302 case-control studies. Int. J. Cancer. 2011;129(4): 920-930.
11. Hainaut P., Pfeifer G. Patterns of p53 G→T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke. Carcinogenesis. 2001;22:367-374.
12. Hollstein M., Bartsch H., Wesch H., Kure E.H., Mustonen R., Mühlbauer K.R., Spiethoff A., Wegener K., Wiethege T., Müller K.M. p53 gene mutation analysis in tumors of patients exposed to alphaparticles. Carcinogenesis. 1997;18(3):511-516.
13. Hosmer D.W., Lemeshow S. Confidence interval estimation of interaction. Epidemiology. 1992;3:452-456.
14. Hu Y., McDermott M.P., Ahrendt S.A. The p53 codon 72 proline allele is associated with p53 gene mutations in non-small cell lung cancer. Clin. Cancer Res. 2005;11(7):2502-2509.
15. Jostes R.F. Genetic, cytogenetic, and carcinogenic effects of radon: a review. Mutat. Res. 1996;340(2-3):125-139.
16. Katkoori V.R., Manne U., Chaturvedi L.S., Basson M.D., Haan P., Coffey D., Bumpers H.L. Functional consequence of the p53 codon 72 polymorphism in colorectal cancer. Oncotarget. 2017;8(44):7657476586.
17. Leng S., Thomas C.L., Snider A.M., Picchi M.A., Chen W., Willis D.G., Carr T., Krzeminski J., Desai D., Shantu A., Lin A., Jacobson M.R., Belinsky S.A. Radon exposure, IL-6 promoter variants, and lung squamous cell carcinoma in former uranium miners. Environ. Health Persp. 2016;124(4):445-451.
18. Lo Y., Darby S., Noakes L., Whitley E., Silcocks P., Fleming K., Bell J. Screening for codon 249 p53 mutation in lung cancer associated with domestic radon exposure. Lancet. 1995;345-360.
19. Neumann M.P., González M.V., Pitiot A.S., Santamaría Í., Martínez C., Tardón A., Astudillo A., Balbín M. TP53 p.R72P genotype is a marker of poor prognosis in lung cancer. Cancer Biomark. 2018;21(4): 747-754.
20. Pereira L., Carvalho M.R., Fonseca C.G., Lima S.S., Cerqueira E.M., Jorge W., Castro M.C. Influence of Arg72Pro polymorphisms of TP53 on the response of buccal cells to radiotherapy. Genet. Mol. Res. 2011;10(4):3552-3558.
21. Quarto M., Pugliese M., La Verde G., Loffredo F., Roca V. Radon exposure assessment and relative effective dose estimation to inhabitants of puglia region, South Italy. Int. J. Environ. Res. Public Health. 2015;12:14948-14957.
22. Robertson A., Allen J., Laney R., Curnow A. The cellular and molecular carcinogenic effects of radon exposure: a review. Int. J. Mol. Sci. 2013;14(7):14024-14063.
23. Ruano-Ravina A., Pereyra M.F., Castro M.T., Pérez-Ríos M., AbalArca J., Barros-Dios J.M. Genetic susceptibility, residential radon, and lung cancer in a radon prone area. J. Thorac. Oncol. 2014;9(8): 1073-1080.
24. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 1989.
25. Stegnar P., Shishkov I., Burkitbayev M., Tolongutov B., Yunusov M., Radyuk R., Salbu B. Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Central Asia. J. Environ. Radioact. 2013;123:3-13.
26. Storey A., Thomas M., Kalita A., Harwood C., Gardiol D., Mantovani F., Breuer J., Leigh I.M., Matlashewski G., Banks L. Role of a p53 polymorphism in the development of human papillomavirusassociated cancer. Nature. 1998;393:229-341.
27. Taylor J., Watson M., Devereux T., Michels R., Saccomanno G., Anderson M. p53 mutation hotspot in radon-associated lung cancer. Lancet. 1994;343(8889):86-87.
28. Thomas M., Kalita A., Labrecque S., Pim D., Banks L., Matlashewski G. Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol. Cell Biol. 1999;19(2):1092-1100.
29. Vähäkangas K., Bennett W., Castrén K., Welsh J., Khan M., Blömeke B., Alavanja M., Harris C. p53 and K-ras mutations in lung cancers from former and never-smoking women. Cancer Res. 2001;61: 4350-4356.
30. Vähäkangas K., Samet J., Metcalf R., Welsh J., Bennett W., Lane D., Harris C. Mutations of p53 and ras genes in radon-associated lung cancer from uranium miners. Lancet. 1992;339(8793):576-580.
31. Wang S., Lan X., Tan S., Wang S., Li Y. P53 codon 72 Arg/Pro polymorphism and lung cancer risk in Asians: an updated meta-analysis. Tumor Biol. 2013;34(5):2511-2520.
32. WHO Handbook on Indoor Radon: A Public Health Perspective. Eds. W.J. Angell, H. Zeeb, F. Shannon. Geneva: World Health Organization, 2009.
33. Ye X.H., Bu Z.B., Feng J., Peng L., Liao X.B., Zhu X.L., Sun X.L., Yu H.G., Yan D.F., Yan S.X. Association between the TP53 polymorphisms and lung cancer risk: a meta-analysis. Mol. Biol. Rep. 2014;41(1):373-385.
34. Yngveson A., Williams C., Hjerpe A., Lundeberg J., Söderkvist P., Pershagen G. p53 mutations in lung cancer associated with residential radon exposure. Cancer Epidemiol. Biomarkers Prev. 1999;8:433-438.
35. Zhao Y., Wu L., Yue X., Zhang C., Wang J., Li J., Sun X., Zhu Y., Feng Z., Hu W. A polymorphism in the tumor suppressor p53 affects aging and longevity in mouse models. eLife. 2018;7.e34701. DOI 10.7554/eLife.34701.