1. Aoyama W., Sasaki S., Matsumura S., Mitsunaga T., Hirai H., Tsutsumi Y., Nishida T. Sinapyl alcohol-specific peroxidase isoenzyme catalyzes the formation of the dehydrogenative polymer from sinapyl alcohol. J. Wood Sci. 2002;6(48):497-504. https://doi.org/10.1007/BF00766646/.
2. Barcelo A.R., Gomez Ros L.V., Carrasco A.E. Looking for syringyl peroxidases. Trends Plant Sci. 2007;12(1):486-491. https://doi.org/10.1016/j.tplants.2007.09.002.
3. Barcelo A.R., Gomez Ros L.V., Gabaldon C., Lopez-Serrano M., Pomar F., Carrion J.S., Pedreño M.A. Basic peroxidases: the gateway for lignin evolution? Phytochem. Rev. 2004;3:61-78. https://doi.org/10.1023/B:PHYT.0000047803.49815.1a.
4. Berthet S., Thevenin J., Baratiny D., Demont-Caulet N., Debeaujon I., Bidzinski P., Leple J.C., Huis R., Hawkins S., Gomez L.D., Lapierre C., Jouanin L. Role of plant laccases in lignin polymerization. Adv. Botan. Res. 2012;61:145-172. https://doi.org/10.1016/B978-0-12416023-1.00005-7.
5. Bindschedler L.V., Dewdney J., Blee K.A., Stone J.M., Asai T., Plotnikov J., Denoux C., Hayes T., Gerrish C., Davies D.R., Ausubel F.M., Bolwell G.P. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J. 2006; 47:851-863. https://doi.org/10.1111/j.1365-313X.2006.02837.x.
6. Boerjan W., Ralph J., Baucher M. Lignin biosynthesis. Annu. Rev. Plant Biol. 2003;54:519-546. https://doi.org/10.1146/annurev.arplant.54.031902.134938.
7. Chassot C., Nawrath C., Metraux J.P. Cuticular defects lead to full immunity to a major plant pathogen. Plant J. 2007;49:972-980. https://doi.org/10.1111/j.1365-313X.2006.03017.x.
8. Cosio C., Dunand C. Specific functions of individual class III peroxidase genes. J. Exp. Bot. 2009;2(60):391-408. https://doi.org/10.1093/jxb/ern318.
9. Fernandez-Pereza F., Vivara T., Pomarb F., Pedrenoa M.A., NovoUzal E. Peroxidase 4 is involved in syringyl lignin formation in Arabidopsis thaliana. J. Plant Physiol. 2015;175:86-94. https://doi.org/10.1016/j.jplph.2014.11.006.
10. Gabaldon C., Lopez-Serrano M., Pedreño M.A., Barcelo A.R. Cloning and molecular characterization of the basic peroxidase isoenzyme from Zinnia elegans, an enzyme involved in lignin biosynthesis. Plant Physiol. 2005;3(139):1138-1154. https://doi.org/10.1104/pp.105.069674.
11. Gabaldon T., Koonin E.V. Functional and evolutionary implications of gene orthology. Nat. Rev. Genet. 2013;14(5):360-366. https://doi.org/10.1038/nrg3456.
12. Herrero J., Esteban-Carrasco A., Zapata J.M. Looking for Arabidopsis thaliana peroxidases involved in lignin biosynthesis. Plant Physiol. Biochem. 2013a;67:77-86. https://doi.org/10.1016/j.plaphy.2013.02.019.
13. Herrero J., Fernandez-Perez F., Yebra T., Novo-Uzal E., Pomar F., Pedreño M.A., Cuello J., Guera A., Esteban-Carrasco A., Zapata J.M. Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis. Planta. 2013b;6(237):1599-1612. https://doi.org/10.1007/s00425-0131865-5.
14. Hiraga S., Sasaki K., Ito H., Ohashi Y., Matsui H. A large family of class III plant peroxidases. Plant Cell Physiol. 2001;5(42):462-468. https://doi.org/10.1093/pcp/pce061.
15. Irshad M., Canut H., Borderies G., Pont-Lezica R., Jamet E. A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: confirmed actors and newcomers. BMC Plant Biol. 2008;8:94. https://doi.org/10.1186/1471-2229-8-94.
16. Jovanovic S.V., Kukavica B., Vidovic M., Morina F., Menckhoff L. Class III peroxidases: functions, localization and redox regulation of isoenzymes. Antioxidants and Antioxidant Enzymes in Higher Plants. 2018;269-300. https://doi.org/10.1007/978-3-319-75088-0_13.
17. Krainer F.W., Pletzenauer R., Rossetti L., Herwig C., Glieder A., Spadiut O. Purification and basic biochemical characterization of 19 recombinant plant peroxidase isoenzymes produced in Pichia pastoris. Protein Expr. Purif. 2014;100(95):104-112. https://doi.org/10.1016/j.pep.2013.12.003.
18. Kukavica B., Veljoviс-Jovanoviс S., Menckhoff L., Lüthje S. Cell wallbound cationic and anionic class III isoperoxidases of pea root: biochemical characterization and function in root growth. J. Exp. Bot. 2012;63:4631-4645. https://doi.org/10.1093/jxb/ers139.
19. Kumar S. Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datesets. Mol. Biol. Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054.
20. Kunieda T., Shimada T., Kondo M., Nishimura M., Nishitani K., HaraNishimura I. Spatiotemporal secretion of PEROXIDASE36 is required for seed coat mucilage extrusion in Arabidopsis. Plant Cell. 2013;4(25):1355-1367. https://doi.org/10.1105/tpc.113.110072.
21. Liu Q., Luo L., Zheng L. Lignins: biosynthesis and biological functions in plants. Int. J. Mol. Sci. 2018;19(2):335. https://doi.org/10.3390/ijms 19020335.
22. Llorente F., Lopez-Cobollo R.M., Catala R., Martinez-Zapater J.M., Salinas J. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J. 2002;32:13-24. https://doi.org/10.1046/j.1365-313X.2002.01398.x.
23. Mansouri I.E., Mercado J.A., Santiago-Domenech N., Pliego-Alfaro F., Valpuesta V., Quesada M.A. Biochemical and phenotypical characterization of transgenic tomato plants overexpressing a basic peroxidase. Physiol. Plant. 1999;106:355-362. https://doi.org/10.1034/j.1399-3054.1999.106401.x.
24. Marjamaa K., Kukkola E.M., Fagerstedt K.V. The role of xylem class III peroxidases in lignification. J. Exp. Bot. 2009;60(2):367376. https://doi.org/10.1093/jxb/ern278.
25. Nei M., Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford University Press, 2000.
26. Ostergaard L., Teilum K., Mirza O., Mattsson O., Petersen M., Welinder K.G., Mundy J., Gajhede M., Henriksen A. Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification. Plant Mol. Biol. 2000; 44:231-243. https://doi.org/10.1023/A:1006442618860.
27. Passardi F., Longet D., Penel C., Dunand C. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry. 2004a;65:1879-1893. https://doi.org/10.1016/j.phytochem.2004.06.023.
28. Passardi F., Penel C., Dunand C. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci. 2004b;9:534540. https://doi.org/10.1016/j.tplants.2004.09.002.
29. Pedreira J., Herrera M.T., Zarra I., Revilla G. The overexpression of AtPrx37, an apoplastic peroxidase, reduces growth in Arabidopsis. Physiol. Plant. 2011;141:177-187. https://doi.org/10.1111/j.1399-3054.2010.01427.x.
30. Quiroga M., Guerrero C., Botella M.A., Barcelo A., Amaya I., Medina M.I., Alonso F.J., Milrad de Forchetti S., Tigier H., Valpuesta V. A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol. 2000;122:1119-1127. https://doi.org/10.1104/pp.122.4.1119.
31. Sanou N., Nei M. The Neighbor-Joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1981;4:406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454.
32. Sasaki S., Nishida T., Tsutsumi Y., Kondo R. Lignin dehydrogenative polymerization mechanism: a poplar cell wall peroxidase directly oxidizes polymer lignin and produces in vitro dehydrogenative polymer rich in beta-O-4 linkage. FEBS Lett. 2004;562:197-201. https://doi.org/10.1016/S0014-5793(04)00224-8.
33. Sato Y., Demura T., Yamawaki K., Inoue Y., Sato S., Sugiyama M., Fukuda H. Isolation and characterization of a novel peroxidase gene ZPO-C whose expression and function are closely associated with lignification during tracheary element differentiation. Plant Cell Physiol. 2006;4(47):493-503. https://doi.org/10.1093/pcp/pcj016.
34. Shigeto J., Kiyonaga Y., Fujita K., Kondo R., Tsutsumi Y. Putative cationic cell-wall-bound peroxidase homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, are involved in lignification. J. Agric. Food Chem. 2013;16(61):3781-3788. https://doi.org/10.1021/jf400426g.
35. Tsukagoshi H., Busch W., Benfey P.N. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell. 2010;4(143):606-616. https://doi.org/10.1016/j.cell.2010.10.020.
36. Valerio L., De Meyer M., Penel C., Dunand C. Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry. 2004;65:1331-1342. https://doi.org/10.1016/j.phytochem.2004.04.017.
37. Welinder K.G., Justesen A.F., Kjaersgard I.V.H., Jensen R.B., Rasmussen S.K., Jespersen H.M., Duroux L. Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. Eur. J. Biochem. 2002;269:6063-6081. https://doi.org/10.1046/j.1432-1033.2002.03311.x.
38. Yokoyama R., Nishitani K. Identification and characterization of Arabidopsis thaliana genes involved in xylem secondary cell walls. J. Plant Res. 2006;119:189-194. https://doi.org/10.1007/s10265-006-0261-7.