Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Prediction of some peroxidase functions in Arabidopsis thaliana L. by bioinformatic search

https://doi.org/10.18699/VJ19.533

Abstract

Peroxidases of class III are common in various organisms. They are involved in lignin biosynthesis and plant protection against stressors. Peroxidases are presented in many isoforms, whose role is not always clear. The aim of this study is to analyze the amino acid sequences of reference peroxidases with known functions and peroxidases from Arabidopsis thaliana L. whose functions are unknown and to consider their putative roles in lignin biosynthesis. The structural and functional organization of peroxidases was analyzed by bioinformatical methods applied to open Internet sources. Seven reference peroxidases were chosen from four plant species: Zinnia sp., Armoracia rusticana P.G. Gaertn., Lycopersicon esculentum L. и Populus alba L. Twenty-four amino acid sequences of homologous peroxidases from A. thaliana were selected for the analyses with the BLAST service. Their molecular weights and isoelectric points were calculated. Multiple alignments of amino acid sequences and phylogenetic analysis were done. Sites of binding to monolignol substrates were identified in seven peroxidases from A. thaliana, and the enzymes were assigned to the groups of Sor G-peroxidases. Amino acid replacements in the primary structures of peroxidases were analyzed. Peroxidases from A. thaliana were clustered with reference peroxidases. They formed six clusters on the phylogenetic tree, three of which contained only A. thaliana peroxidases. Peroxidases within each cluster had similar molecular weights and isoelectric points, common localization of expression, and similar functions. Thus, the use of bioinformatics, databases, and published data bring us to assumptions as to the functions of several A. thaliana class III peroxidases. AtPrx39 peroxidase was shown to be affine to sinapyl alcohol; AtPrx54, to p-coumaryl and coniferyl alcohols. They are likely to participate in lignin biosynthesis.

About the Authors

A. S. Tugbaeva
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation
Ekaterinburg


A. A. Ermoshin
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation
Ekaterinburg


I. S. Kiseleva
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation
Ekaterinburg


References

1. Aoyama W., Sasaki S., Matsumura S., Mitsunaga T., Hirai H., Tsutsumi Y., Nishida T. Sinapyl alcohol-specific peroxidase isoenzyme catalyzes the formation of the dehydrogenative polymer from sinapyl alcohol. J. Wood Sci. 2002;6(48):497-504. DOI 10.1007/BF00766646/.

2. Barcelo A.R., Gomez Ros L.V., Carrasco A.E. Looking for syringyl peroxidases. Trends Plant Sci. 2007;12(1):486-491. DOI 10.1016/j.tplants.2007.09.002.

3. Barcelo A.R., Gomez Ros L.V., Gabaldon C., Lopez-Serrano M., Pomar F., Carrion J.S., Pedreño M.A. Basic peroxidases: the gateway for lignin evolution? Phytochem. Rev. 2004;3:61-78. DOI 10.1023/B:PHYT.0000047803.49815.1a.

4. Berthet S., Thevenin J., Baratiny D., Demont-Caulet N., Debeaujon I., Bidzinski P., Leple J.C., Huis R., Hawkins S., Gomez L.D., Lapierre C., Jouanin L. Role of plant laccases in lignin polymerization. Adv. Botan. Res. 2012;61:145-172. DOI 10.1016/B978-0-12416023-1.00005-7.

5. Bindschedler L.V., Dewdney J., Blee K.A., Stone J.M., Asai T., Plotnikov J., Denoux C., Hayes T., Gerrish C., Davies D.R., Ausubel F.M., Bolwell G.P. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J. 2006; 47:851-863. DOI 10.1111/j.1365-313X.2006.02837.x.

6. Boerjan W., Ralph J., Baucher M. Lignin biosynthesis. Annu. Rev. Plant Biol. 2003;54:519-546. DOI 10.1146/annurev.arplant.54.031902.134938.

7. Chassot C., Nawrath C., Metraux J.P. Cuticular defects lead to full immunity to a major plant pathogen. Plant J. 2007;49:972-980. DOI 10.1111/j.1365-313X.2006.03017.x.

8. Cosio C., Dunand C. Specific functions of individual class III peroxidase genes. J. Exp. Bot. 2009;2(60):391-408. DOI 10.1093/jxb/ern318.

9. Fernandez-Pereza F., Vivara T., Pomarb F., Pedrenoa M.A., NovoUzal E. Peroxidase 4 is involved in syringyl lignin formation in Arabidopsis thaliana. J. Plant Physiol. 2015;175:86-94. DOI 10.1016/j.jplph.2014.11.006.

10. Gabaldon C., Lopez-Serrano M., Pedreño M.A., Barcelo A.R. Cloning and molecular characterization of the basic peroxidase isoenzyme from Zinnia elegans, an enzyme involved in lignin biosynthesis. Plant Physiol. 2005;3(139):1138-1154. DOI 10.1104/pp.105.069674.

11. Gabaldon T., Koonin E.V. Functional and evolutionary implications of gene orthology. Nat. Rev. Genet. 2013;14(5):360-366. DOI 10.1038/nrg3456.

12. Herrero J., Esteban-Carrasco A., Zapata J.M. Looking for Arabidopsis thaliana peroxidases involved in lignin biosynthesis. Plant Physiol. Biochem. 2013a;67:77-86. DOI 10.1016/j.plaphy.2013.02.019.

13. Herrero J., Fernandez-Perez F., Yebra T., Novo-Uzal E., Pomar F., Pedreño M.A., Cuello J., Guera A., Esteban-Carrasco A., Zapata J.M. Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis. Planta. 2013b;6(237):1599-1612. DOI 10.1007/s00425-0131865-5.

14. Hiraga S., Sasaki K., Ito H., Ohashi Y., Matsui H. A large family of class III plant peroxidases. Plant Cell Physiol. 2001;5(42):462-468. DOI 10.1093/pcp/pce061.

15. Irshad M., Canut H., Borderies G., Pont-Lezica R., Jamet E. A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: confirmed actors and newcomers. BMC Plant Biol. 2008;8:94. DOI 10.1186/1471-2229-8-94.

16. Jovanovic S.V., Kukavica B., Vidovic M., Morina F., Menckhoff L. Class III peroxidases: functions, localization and redox regulation of isoenzymes. Antioxidants and Antioxidant Enzymes in Higher Plants. 2018;269-300. DOI 10.1007/978-3-319-75088-0_13.

17. Krainer F.W., Pletzenauer R., Rossetti L., Herwig C., Glieder A., Spadiut O. Purification and basic biochemical characterization of 19 recombinant plant peroxidase isoenzymes produced in Pichia pastoris. Protein Expr. Purif. 2014;100(95):104-112. DOI 10.1016/j.pep.2013.12.003.

18. Kukavica B., Veljoviс-Jovanoviс S., Menckhoff L., Lüthje S. Cell wallbound cationic and anionic class III isoperoxidases of pea root: biochemical characterization and function in root growth. J. Exp. Bot. 2012;63:4631-4645. DOI 10.1093/jxb/ers139.

19. Kumar S. Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datesets. Mol. Biol. Evol. 2016;33(7):1870-1874. DOI 10.1093/molbev/msw054.

20. Kunieda T., Shimada T., Kondo M., Nishimura M., Nishitani K., HaraNishimura I. Spatiotemporal secretion of PEROXIDASE36 is required for seed coat mucilage extrusion in Arabidopsis. Plant Cell. 2013;4(25):1355-1367. DOI 10.1105/tpc.113.110072.

21. Liu Q., Luo L., Zheng L. Lignins: biosynthesis and biological functions in plants. Int. J. Mol. Sci. 2018;19(2):335. DOI 10.3390/ijms 19020335.

22. Llorente F., Lopez-Cobollo R.M., Catala R., Martinez-Zapater J.M., Salinas J. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J. 2002;32:13-24. DOI 10.1046/j.1365-313X.2002.01398.x.

23. Mansouri I.E., Mercado J.A., Santiago-Domenech N., Pliego-Alfaro F., Valpuesta V., Quesada M.A. Biochemical and phenotypical characterization of transgenic tomato plants overexpressing a basic peroxidase. Physiol. Plant. 1999;106:355-362. DOI 10.1034/j.1399-3054.1999.106401.x.

24. Marjamaa K., Kukkola E.M., Fagerstedt K.V. The role of xylem class III peroxidases in lignification. J. Exp. Bot. 2009;60(2):367376. DOI 10.1093/jxb/ern278.

25. Nei M., Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford University Press, 2000.

26. Ostergaard L., Teilum K., Mirza O., Mattsson O., Petersen M., Welinder K.G., Mundy J., Gajhede M., Henriksen A. Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification. Plant Mol. Biol. 2000; 44:231-243. DOI 10.1023/A:1006442618860.

27. Passardi F., Longet D., Penel C., Dunand C. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry. 2004a;65:1879-1893. DOI 10.1016/j.phytochem.2004.06.023.

28. Passardi F., Penel C., Dunand C. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci. 2004b;9:534540. DOI 10.1016/j.tplants.2004.09.002.

29. Pedreira J., Herrera M.T., Zarra I., Revilla G. The overexpression of AtPrx37, an apoplastic peroxidase, reduces growth in Arabidopsis. Physiol. Plant. 2011;141:177-187. DOI 10.1111/j.1399-3054.2010.01427.x.

30. Quiroga M., Guerrero C., Botella M.A., Barcelo A., Amaya I., Medina M.I., Alonso F.J., Milrad de Forchetti S., Tigier H., Valpuesta V. A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol. 2000;122:1119-1127. DOI 10.1104/pp.122.4.1119.

31. Sanou N., Nei M. The Neighbor-Joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1981;4:406-425. DOI 10.1093/oxfordjournals.molbev.a040454.

32. Sasaki S., Nishida T., Tsutsumi Y., Kondo R. Lignin dehydrogenative polymerization mechanism: a poplar cell wall peroxidase directly oxidizes polymer lignin and produces in vitro dehydrogenative polymer rich in beta-O-4 linkage. FEBS Lett. 2004;562:197-201. DOI 10.1016/S0014-5793(04)00224-8.

33. Sato Y., Demura T., Yamawaki K., Inoue Y., Sato S., Sugiyama M., Fukuda H. Isolation and characterization of a novel peroxidase gene ZPO-C whose expression and function are closely associated with lignification during tracheary element differentiation. Plant Cell Physiol. 2006;4(47):493-503. DOI 10.1093/pcp/pcj016.

34. Shigeto J., Kiyonaga Y., Fujita K., Kondo R., Tsutsumi Y. Putative cationic cell-wall-bound peroxidase homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, are involved in lignification. J. Agric. Food Chem. 2013;16(61):3781-3788. DOI 10.1021/jf400426g.

35. Tsukagoshi H., Busch W., Benfey P.N. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell. 2010;4(143):606-616. DOI 10.1016/j.cell.2010.10.020.

36. Valerio L., De Meyer M., Penel C., Dunand C. Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry. 2004;65:1331-1342. DOI 10.1016/j.phytochem.2004.04.017.

37. Welinder K.G., Justesen A.F., Kjaersgard I.V.H., Jensen R.B., Rasmussen S.K., Jespersen H.M., Duroux L. Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. Eur. J. Biochem. 2002;269:6063-6081. DOI 10.1046/j.1432-1033.2002.03311.x.

38. Yokoyama R., Nishitani K. Identification and characterization of Arabidopsis thaliana genes involved in xylem secondary cell walls. J. Plant Res. 2006;119:189-194. DOI 10.1007/s10265-006-0261-7.


Review

Views: 578


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)