Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Nuclear and chloroplast genome variability in leek (Allium porrum L.)

https://doi.org/10.18699/VJ19.565

Abstract

The genus Allium L. (Amaryllidaceae), the most numerous among monocotyledonous plants, includes such economically important vegetable crops as onion (A. cepa), garlic (A. sativum) and leek (A. porrum). Leek has a high taste and proven valuable dietary properties and is one of the most popular vegetable crops in Western Europe. Despite a high importance of leek as a vegetable, this species is rarely the subject of molecular genetic studies. The genetic diversity of leeks has never been studied before. Therefore, in this work, we studied the nuclear variability (AFLP) and the chloroplast (nucleotide sequence analysis) genomes using a broad sample. For this work, 65 leek accessions were selected from the collection of the Scientific Center of Vegetable Crops, which included varieties of domestic and foreign breeding. As a result of an AFLP analysis and processing of the DNA spectra obtained, 760 fragments were identified, of which 716 were polymorphic for the leek accessions being analyzed. The calculated genetic distances between the leek samples varied from 0.4 to 0.76, which is comparable to the intraspecific polymorphism of related Allium species (onions, garlic). Analysis of the genomic structure with STRUCTURE 2.3.4 divided the leek samples into seven groups, which generally coincides with the clustering of these samples. To assess the variability of the chloroplast genome, nine sites of the chloroplast genome were sequenced in the leek samples, both non-coding (intergenic spacers rpl32-trnL, ndhJ-trnL, and intron rps16 gene), and protein coding genes (psaA, psaB, psbA, psbB, psbE, petB). The analysis of the sites of the leek chloroplast genome revealed an extremely low level of their polymorphism, only six SNPs were detected in the studied sequences with a total length of about 10,500 bp. Thus, as a result of this work, a high level of polymorphism of the leek nuclear genome was revealed, while the polymorphism of the chloroplast genome was extremely low.

About the Authors

E. A. Dyachenko
Federal Research Centre “Fundamentals of Biotechnology”, RAS, Institute of Bioengineering
Russian Federation
Moscow.


T. M. Seredin
Federal Scientific Center
Russian Federation
VNIISSOK.


M. A. Filyushin
Federal Research Centre “Fundamentals of Biotechnology”, RAS, Institute of Bioengineering; Federal Scientific Center
Russian Federation

Moscow.

VNIISSOK.



References

1. Агафонов А.Ф., Дубов М.В. Селекция лука порея для средней полосы России при выращивании безрассадным способом. Овощи России. 2018;3(41):47-51. [Agafonov A.F., Dubova M.V. Selection of leek for the midland of Russia at cultivation no seedling method. Ovoshchi Rossii = Vegetable Crops of Russia. 2018;3:47-51. DOI 10.18619/2072-9146-2018-3-47-51. (in Russian)]

2. Филюшин М.А., Агафонов А.Ф. Анализ внутрисортового полиморфизма сортообразцов лука порея методами RAPD и ISSR анализов. Вестн. Российской академии сельскохозяйственных наук. 2015;5:53-56. [Filyushin M.A., Agafonov A.F. Analyzing the intravarietal polymorphism in variety samples of leek by methods of RAPD and ISSR analysis. Vestnik Rossiyskoy Akademii Selskokhozyaystvennyh Nauk = Vestnik of the Russian Agricultural Science. 2015;5:53-56. (in Russian)]

3. Филюшин М.А., Холда О.А., Кочиева Е.З., Рыжова Н.Н. AFLP маркирование генотипов сортов лука-порея (Allium porrum). Генетика. 2011;47(4):560-565. [Filjushin M.A., Kholda O.A., Kochieva E.Z., Ryzhova N.N. AFLP marking of the genotypes of leek (Allium porrum) varieties. Rus. J. Genet. 2011;47:492-496. DOI 10.1134/S1022795411030045.]

4. Bernaert N., De Loose M., Van Bockstaele E., Van Droogenbroeck B. Antioxidant changes during domestic food processing of the white shaft and green leaves of leek (Allium ampeloprasum var. porrum). J. Sci. Food Agric. 2014;94(6):1168-1174. DOI 10.1002/jsfa.6389.

5. Bernaert N., Wouters D., De Vuyst L., De Paepe D., De Clercq H., Van Bockstaele E., De Loose M., Van Droogenbroeck B. Antioxidant changes of leek (Allium ampeloprasum var. porrum) during spontaneous fermentation of the white shaft and green leaves. J. Sci. Food Agric. 2013;93(9):2146-2153. DOI 10.1002/jsfa.6020.

6. Brullo S., Brullo C., Cambria S., del Galdo G.G., Salmeri C. Allium albanicum (Amaryllidaceae), a new species from Balkans and its relationships with A. meteoricum Heldr. & Hausskn. ex Halácsy. PhytoKeys. 2019;119:117-136. DOI 10.3897/phytokeys.119.30790.

7. Egea L.A., Mérida-García R., Kilian A., Hernandez P., Dorado G. Assessment of genetic diversity and structure of large garlic (Allium sativum) germplasm bank, by diversity arrays technology “genotyping- by-sequencing” platform (DArTseq). Front. Genet. 2017; 8:98.

8. Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 2005;14(8):2611-2620.

9. Filyushin М.А., Beletsky A.V., Mazur A.M., Kochieva E.Z. The complete plastid genome sequence of garlic Allium sativum L. Mitochondrial DNA. Part B. 2016;1(1):831-832. DOI 10.1080/23802359.2016.1247669.

10. Filyushin M.A., Beletsky A.V., Mazur A.M., Kochieva E.Z. Characterization of the complete plastid genome of lop-sided onion Allium obliquum L. (Amaryllidaceae). Mitochondrial DNA. Part B. 2018;3(1):393-394. DOI 10.1080/23802359.2018.1456369.

11. Fu Y.H., Yang C., Meng Q., Liu F., Shen G., Zhou M., Ao M. Genetic diversity and structure of Coix lacryma-jobi L. from its world secondary diversity center, Southwest China. Int. J. Genomics. 2019; 2019:9815697. DOI 10.1155/2019/9815697.

12. Govaerts R., Kington S., Friesen N., Fritsch R., Snijman D.A., Marcucci R., Silverstone-Sopkin P.A., Brullo S. World сhecklist of Amaryllidaceae. Facilitated by the Royal Botanic Gardens, Kew. 2018. http://wcsp.science.kew.org [Retrieved 1 October 2018].

13. Guenaoui C., Mang S., Figliuolo G., Neffati M. Diversity in Allium ampeloprasum: from small and wild to large and cultivated. Genet. Resour. Crop Evol. 2013;60:97-114. DOI 10.1007/s10722-012-9819-5. Guetat A., Vilatersana R., Neffati M., Boussaid M. Genetic diversity in Tunisian rosy garlic populations (Allium roseum L.) as evidenced by chloroplastic DNA analysis: sequence variation of non-coding region and intergenic spacers. Biochem. Syst. Ecol. 2010;38:502-509.

14. Hanelt P. Taxonomic problems in Mediterranean Allium, and relationships with non-Mediterranean Allium groups. Bocconea. 1996;5: 259-265.

15. Hirschegger P., Jakse J., Trontelj P., Bohanec B. Origins of Allium ampeloprasum horticultural groups and a molecular phylogeny of the section Allium (Allium: Alliaceae). Mol. Phylogenet. Evol. 2010; 54(2):488-497. DOI 10.1016/j.ympev.2009.08.030.

16. Jakse J., Meyer J.D., Suzuki G. Pilot sequencing of onion genomic DNA reveals fragments of transposable elements, low gene densities, and significant gene enrichment after methyl filtration. Mol. Genet. Genomics. 2008;280:287-292.

17. Jones H.A., Mann L.K. Onions and their Allies – Botany, Cultivation, and Utilization. London: Leonard Hill Books Limited, 1963.

18. Karić L., Golzardi M., Glamočlija P., Šutković J. Genetic diversity assessment of Allium cepa L. cultivars from Bosnia and Herzegovina using SSR makers. Genet. Mol. Res. 2018;17(1):gmr16039870. DOI 10.4238/gmr16039870.

19. Li Q.Q., Zhou S.D., He X.J., Yu Y., Zhang Y.C., Wei X.Q. Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Ann. Bot. 2010;106(5):709-733. DOI 10.1093/aob/mcq177.

20. Li Q.Q., Zhou S.D., Huang D.Q., He X.J., Wei X.Q. Molecular phylogeny, divergence time estimates and historical biogeography within one of the world’s largest monocot genera. AoB Plants. 2016;8: plw041. DOI 10.1093/aobpla/plw041.

21. Peška V., Mandáková T., Ihradská V., Fajkus J. Comparative dissection of three giant genomes: Allium cepa, Allium sativum, and Allium ursinum. Int. J. Mol. Sci. 2019;20(3):733. DOI 10.3390/ijms20030733.

22. Shaw J., Lickey E.B., Schilling E.E., Small R.L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am. J. Bot. 2007;94(3):275-288.

23. Sinitsyna T.A., Herden T., Friesen N. Dated phylogeny and biogeography of the Eurasian Allium section Rhizirideum (Amaryllidaceae). Plant Syst. Evol. 2016;302:1311-1328.

24. Soininen T.H., Jukarainen N., Soininen P. Metabolite profiling of leek (Allium porrum L.) cultivars by (1) H NMR and HPLC-MS. Phytochem. Anal. 2014;25(3):220-228. DOI 10.1002/pca.2495.

25. Sun S., Zhou Y., Chen J., Shi J., Zhao H., Zhao H., Song W., Zhang M., Cui Y., Dong X., Liu H., Ma X., Jiao Y., Wang B., Wei X., Stein J.C., Glaubitz J.C., Lu F., Yu G., Liang C., Fengler K., Li B., Rafalski A., Schnable P.S., Ware D.H., Buckler E.S., Lai J. Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat. Genet. 2018;50(9):1289-1295. DOI 10.1038/s41588-018-0182-0.

26. Suzuki G., Ura A., Saito N., Do G.S., Seo B.B., Yamamoto M., Mukai Y. BAC FISH analysis in Allium cepa. Genes Genet. Syst. 2001; 76:251-255.

27. Vitte C., Estep M.C., Leebens-Mack J., Bennetzen J.L. Young, intact and nested retrotransposons are abundant in the onion and asparagus genomes. Ann. Bot. 2013;112:881-889.

28. Volk G.M., Henk A.D., Richards C.M. Genetic diversity among U.S. garlic clones as detected using AFLP methods. J. Am. Soc. Hort. Sci. 2004;129(4):559-569.

29. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M., Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23: 4407-4414.

30. Zhao W.G., Chung J.W., Lee G.A., Ma K.H., Kim H.H., Kim K.T., Chung I.M., Lee J.K., Kim N.S., Kim S.M., Park Y.J. Molecular genetic diversity and population structure of a selected core set in garlic and its relatives using novel SSR markers. Plant Breed. 2011; 130:46-54.

31. Zhu S., Tang S., Tan Z., Yu Y., Dai Q., Liu T. Comparative transcriptomics provide insight into the morphogenesis and evolution of fistular leaves in Allium. BMC Genomics. 2017;18:60. DOI 10.1186/s12864-016-3474-8.


Review

Views: 772


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)