Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Single nucleotide polymorphism rs110861313 in the intergenic region of chromosome 23 is associated with the development of leukosis in the Russian Black Pied cattle

https://doi.org/10.18699/VJ19.576

Abstract

In recent years, using a genome-wide association study (GWAS), a number of single nucleotide polymorphisms (SNPs) have been suggested to be associated with susceptibility to leukemia in cattle. However, all studies have been done with purebred Holstein cows and their hybrids. In this regard, it is important to confirm the functional role of polymorphisms previously identified in a GWAS study in Russian cattle breeds. The aim of this study was to verify the association between rs110861313 in the intergenic region of bovine chromosome 23 and leukemia in the Russian Black Pied cattle. Based on the levels of bovine leukemia virus (BLV)-specific antibodies detected in serum using serodiagnostic techniques, animals were divided into three groups: healthy animals (n = 115), asymptomatic virus carriers (n = 145) and animals with leukemia (n = 107). Genotyping of rs110861313 was carried out using polymerase chain reaction followed by analysis of restriction fragment length polymorphisms. A significant decrease in the frequency of the A/A genotype (11.2 %) was revealed in animals with persistent lymphocytosis compared to virus carriers (27.6 %) (p < 0.002). At the same time, the frequency of animals with the C/C genotype in animals with persistent lymphocytosis (41.1 %) was significantly higher than that of virus carriers (21.4 %) (p < 0.001). In this case, asymptomatic virus carriers can be considered a more suitable control than healthy animals that have not been in contact with the virus. According to bioinformatics analysis, resistance to BLV can be due to the presence of the transcription factor FOXM1 binding site in the region of rs110861313. FOXM1 is expressed in immune cells and can potentially affect the expression of the neighboring genes (LY6G5B, GPANK1, ABHD16A, LY6G6F, LY6G6E, CSNK2B, ApoM). Thus, we found that SNP rs110861313 in the intergenic region of bovine chromosome 23 is associated with the development of leukemia following BLV infection in the Russian Black Pied cattle.

About the Authors

R. B. Aitnazarov
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


E. V. Ignatieva
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


T. A. Agarkova
Siberian Federal Research Center for AgroBioTechnologies, RAS
Russian Federation

Krasnoobsk, Novosibirsk region



N. G. Dvoeglazov
Siberian Federal Research Center for AgroBioTechnologies, RAS
Russian Federation

Krasnoobsk, Novosibirsk region



N. A. Osipova
Siberian Federal Research Center for AgroBioTechnologies, RAS
Russian Federation

Krasnoobsk, Novosibirsk region



V. V. Khramtsov
Siberian Federal Research Center for AgroBioTechnologies, RAS
Russian Federation

Krasnoobsk, Novosibirsk region



N. S. Yudin
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


References

1. Volodina Y.L., Shtil A.A. Casein kinase 2, a versatile regulator of cell survival. Mol. Biol. 2012;46(3):381-390. (in Russian)

2. Guidelines on the Diagnosis of Bovine Leukemia (approved by the RF Ministry of Agriculture on Aug. 23, 2000, No. 13-7-2/2130). Available from http://www.consultant.ru/cons/cgi/online.cgi?req=doc&base=EXP&n=371364#08727407013115032 (18.09.2019). (in Russian)

3. Yudin N.S., Barkhash A.V., Maksimov V.N., Ignatieva E.V., Romaschenko A.G. Human genetic predisposition to diseases caused by viruses from flaviviridae family. Mol. Biol. 2018a;52(2):165-181. (in Russian) DOI 10.1134/S0026893317050223.

4. Yudin N.S., Voevoda M.I. Molecular genetic markers of economically important traits in dairy cattle. Russ. J. Genet. 2015;51(5):506-517. (in Russian) DOI 10.1134/S1022795415050087.

5. Yudin N.S., Podkolodnyy N.L., Agarkova T.A., Ignatieva E.V. Prioritization of genes associated with the pathogenesis of leukosis in cattle. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018b;22(8):1063-1069. DOI 10.18699/VJ18.451. (in Russian)

6. Abdalla E.A., Rosa G.J., Weigel K.A., Byrem T. Genetic analysis of leukosis incidence in United States Holstein and Jersey populations. J. Dairy Sci. 2013;96(9):6022-6029. DOI 10.3168/jds.2013-6732.

7. Brym P., Bojarojć-Nosowicz B., Oleński K., Hering D.M., Ruść A., Kaczmarczyk E., Kamiński S. Genome-wide association study for host response to bovine leukemia virus in Holstein cows. Vet. Immunol. Immunopathol. 2016;175:24-35. DOI 10.1016/j.vetimm.2016.04.012.

8. Burny A., Cleuter Y., Kettmann R., Mammerickx M., Marbaix G., Portetelle D., Broeke A., Willems L., Thomas R. Bovine leukemia: facts and hypotheses derived from the study of an infectious cancer. Vet. Microbiol. 1988;17:197-218.

9. Carignano H.A., Roldan D.L., Beribe M.J., Raschia M.A., Amadio A., Nani J.P., Gutierrez G., Alvarez I., Trono K., Poli M.A., Miretti M.M. Genome-wide scan for commons SNPs affecting bovine leukemia virus infection level in dairy cattle. BMC Genomics. 2018; 19(1):142. DOI 10.1186/s12864-018-4523-2.

10. Ferrer J.F. Bovine lymphosarcoma. Adv. Vet. Sci. Comp. Med. 1980; 24:1-68.

11. Gentles A.J., Newman A.M., Liu C.L., Bratman S.V., Feng W., Kim D., Nair V.S., Xu Y., Khuong A., Hoang C.D., Diehn M., West R.B., Plevritis S.K., Alizadeh A.A. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 2015; 21(8):938-945. DOI 10.1038/nm.3909.

12. Gillet N., Florins A., Boxus M., Burteau C., Nigro A., Vandermeers F., Balon H., Bouzar A.B., Defoiche J., Burny A., Reichert M., Kettmann R., Willems L. Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology. 2007;4:18.

13. Hamurcu Z., Ashour A., Kahraman N., Ozpolat B. FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells. Oncotarget. 2016;7(13):16619-16635. DOI 10.18632/oncotarget.7672.

14. Hosking L., Lumsden S., Lewis K., Yeo A., McCarthy L., Bansal A., Riley J., Purvis I., Xu C.F. Detection of genotyping errors by Hardy–Weinberg equilibrium testing. Eur. J. Hum. Genet. 2004;12(5): 395-399.

15. Kataoka K., Nagata Y., Kitanaka A., Shiraishi Y., Shimamura T., Yasunaga J., Totoki Y., Chiba K., Sato-Otsubo A., Nagae G., Ishii R., Muto S., Kotani S., Watatani Y., Takeda J., Sanada M., Tanaka H., Suzuki H., Sato Y., Shiozawa Y., Yoshizato T., Yoshida K., Makishima H., Iwanaga M., Ma G., Nosaka K., Hishizawa M., Itonaga H., Imaizumi Y., Munakata W., Ogasawara H., Sato T., Sasai K., Muramoto K., Penova M., Kawaguchi T., Nakamura H., Hama N., Shide K., Kubuki Y., Hidaka T., Kameda T., Nakamaki T., Ishiyama K., Miyawaki S., Yoon S.S., Tobinai K., Miyazaki Y., TakaoriKondo A., Matsuda F., Takeuchi K., Nureki O., Aburatani H., Watanabe T., Shibata T., Matsuoka M., Miyano S., Shimoda K., Ogawa S. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat. Genet. 2015;47(11):1304-1315. DOI 10.1038/ng.3415.

16. Kulakovskiy I.V., Vorontsov I.E., Yevshin I.S., Sharipov R.N., Fedorova A.D., Rumynskiy E.I., Medvedeva Y.A., Magana-Mora A., Bajic V.B., Papatsenko D.A., Kolpakov F.A., Makeev V.J. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res. 2018;46(D1):D252-D259. DOI 10.1093/nar/gkx1106.

17. Li X., Ma K., Song S., Shen F., Kuang T., Zhu Y., Liu Z. Tight correlation between FoxM1 and FoxP3+ Tregs in gastric cancer and their clinical significance. Clin. Exp. Med. 2018;18(3):413-420. DOI 10.1007/s10238-018-0505-6.

18. Liang J., Liu Z., Zou Z., Tang Y., Zhou C., Yang J., Wei X., Lu Y. The correlation between the immune and epithelial-mesenchymal transition signatures suggests potential therapeutic targets and prognosis prediction approaches in kidney cancer. Sci. Rep. 2018;8(1): 6570. DOI 10.1038/s41598-018-25002-w.

19. Loeb M. Host genomics in infectious diseases. Infect. Chemother. 2013;45(3):253-259. DOI 10.3947/ic.2013.45.3.253.

20. Merkulova T.I., Oshchepkov D.Y., Ignatieva E.V., Ananko E.A., Levitsky V.G., Vasiliev G.V., Klimova N.V., Merkulov V.M., Kolchanov N.A. Bioinformatical and experimental approaches to investigation of transcription factor binding sites in vertebrate genes. Biochemistry (Mosc). 2007;72(11):1187-1193.

21. Nakashima M., Tohyama J., Nakagawa E., Watanabe Y., Siew C.G., Kwong C.S., Yamoto K., Hiraide T., Fukuda T., Kaname T., Nakabayashi K., Hata K., Ogata T., Saitsu H., Matsumoto N. Identification of de novo CSNK2A1 and CSNK2B variants in cases of global developmental delay with seizures. J. Hum. Genet. 2019;64(4):313-322. DOI 10.1038/s10038-018-0559-z.

22. Nandi D., Cheema P.S., Jaiswal N., Nag A. FoxM1: Repurposing an oncogene as a biomarker. Semin. Cancer Biol. 2018;52(Pt. 1):74-84. DOI 10.1016/j.semcancer.2017.08.009.

23. Neff M.M., Turk E., Kalishman M. Web-based primer design for single nucleotide polymorphism analysis. Trends Genet. 2002;18(12):613-615.

24. Niu H.M., Yang P., Chen H.H., Hao R.H., Dong S.S., Yao S., Chen X.F., Yan H., Zhang Y.J., Chen Y.X., Jiang F., Yang T.L., Guo Y. Comprehensive functional annotation of susceptibility SNPs prioritized 10 genes for schizophrenia. Transl. Psychiatry. 2019;9(1):56. DOI 10.1038/s41398-019-0398-5.

25. Poirier K., Hubert L., Viot G., Rio M., Billuart P., Besmond C., Bienvenu T. CSNK2B splice site mutations in patients cause intellectual disability with or without myoclonic epilepsy. Hum. Mutat. 2017; 38(8):932-941. DOI 10.1002/humu.23270.

26. Sakaguchi Y., Uehara T., Suzuki H., Kosaki K., Takenouchi T. Truncating mutation in CSNK2B and myoclonic epilepsy. Hum. Mutat. 2017;38(11):1611-1612. DOI 10.1002/humu.23307.

27. Sambrook J., Russell D.W. The Condensed Protocols from Molecular Cloning: a Laboratory Manual, Cold Spring Harbor; New York: Cold Spring Harbor Laboratory Press, 2006.

28. Stepanova T.V. Analysis of the economic damage caused by bovine leukemia from 2010 to 2014 in the Russian Federation. Russ. J. Agric. Socio-Economic Sci. 2016;8(56):49-56. DOI 10.18551/rjoas.2016-08.08.

29. Wang I.C., Chen Y.J., Hughes D.E., Ackerson T., Major M.L., Kalinichenko V.V., Costa R.H., Raychaudhuri P., Tyner A.L., Lau L.F. FoxM1 regulates transcription of JNK1 to promote the G1/S transition and tumor cell invasiveness. J. Biol. Chem. 2008;283(30):20770-20778. DOI 10.1074/jbc.M709892200.

30. Yang C.P., Li X., Wu Y., Shen Q., Zeng Y., Xiong Q., Wei M., Chen C., Liu J., Huo Y., Li K., Xue G., Yao Y.G., Zhang C., Li M., Chen Y., Luo X.J. Comprehensive integrative analyses identify GLT8D1 and CSNK2B as schizophrenia risk genes. Nat. Commun. 2018;9(1):838. DOI 10.1038/s41467-018-03247-3.

31. Zhou J., Wang Y., Wang Y., Yin X., He Y., Chen L., Wang W., Liu T., Di W. FOXM1 modulates cisplatin sensitivity by regulating EXO1 in ovarian cancer. PLoS One. 2014;9(5):e96989. DOI 10.1371/journal.pone.0096989.

32. Zhu Y., Luo G., Jiang B., Yu M., Feng Y., Wang M., Xu N., Zhang X. Apolipoprotein M promotes proliferation and invasion in non-small cell lung cancers via upregulating S1PR1 and activating the ERK1/2 and PI3K/AKT signaling pathways. Biochem. Biophys. Res. Commun. 2018;501(2):520-526. DOI 10.1016/j.bbrc.2018.05.029.


Review

Views: 734


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)