Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Effect of exogenous human chorionic gonadotropin on ovulation in mice

https://doi.org/10.18699/VJ19.577

Abstract

The implementation of assisted reproductive technologies (ART), hormonal stimulation in particular, may change the quality of ovulated oocytes. The purpose of our work was to study ovulation in CD1 mice after their stimulation with human chorionic gonadotropin (hCG) and to investigate the effects of such hormonal stimulation on the pregnancy duration, fetal losses and the weight of the offspring. No significant differences were found in the total number of ovulated oocytes or in the number of immature (without a polar body) ovulated oocytes; nor were there differences between the groups in the number of oocytes with a developing polar body. However, the number of matured oocytes with a distinct polar body was significantly higher (p < 0.05) in mice stimulated with hCG (experimental group) as compared with the controls (6.2 ± 0.86 and 2.2 ± 0.97, respectively). No significant differences were observed between the experimental and control mice in the duration of pregnancy or in the numbers of term offspring, including the percentage of live and stillborn pups. However, the body weight of the offspring in the experimental group was significantly lower (p < 0.001) as compared with the controls on the fifth day after birth (3.16 ± 0.09 and 3.76 ± 0.07, respectively). Thus, exogenous hCG facilitates the development of mouse oocytes in vivo, which leads to the larger number of their mature forms at ovulation, however, the offspring born after hCG-stimulated pregnancy was characterized by a lower body weight on the fifth day after birth.

About the Authors

S. Ya. Amstislavsky
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


S. V. Ranneva
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


D. S. Ragaeva
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


E. A. Chuyko
Novosibirsk State University
Russian Federation
Novosibirsk


A. M. Popkova
Novosibirsk State University
Russian Federation
Novosibirsk


E. Yu. Brusentsev
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


References

1. Borisova M.A., Moiseenko D.Yu., Smirnova O.V. Human chorionic gonadotropin: Unknown about known. Human Physiology. 2017; 43(1):93­104. (in Russian) DOI 10.1134/S0362119716060050.

2. Brinster R.L. Measuring embryonic enzyme activity. In: Daniel J.C. (Ed.) Methods in Mammalian Embryology. San Francisco: Freeman, 1971;215­227.

3. Cole L.A. Biological functions of hCG and hCG­related molecules. Reprod. Biol. Endocrinol. 2010;8(1):102. DOI 10.1186/1477­7827­8­102.

4. Delvigne A., Rozenberg S. Epidemiology and prevention of ovarian hyperstimulation syndrome (OHSS): a review. Hum. Reprod. Update. 2002;8:559­577. DOI 10.1093/humupd/8.6.559.

5. Dinopoulou V., Drakakis P., Kefala S., Kiapekou E., Bletsa R., Anagnostou E., Kallianidis K., Loutradis D. Effect of recombinantLH and hCG in the absence of FSH on in vitro maturation (IVM) fertilization and early embryonic development of mouse germinal vesicle (GV)­stage oocytes. Reprod. Biol. 2016;16(2):138­146. DOI 10.1016/j.repbio.2016.01.004.

6. Drakakis P., Loutradis D., Beloukas A., Sypsa V., Anastasiadou V., Kalofolias G., Arabatzi H., Kiapekou E., Stefanidis K., Paraskevis D., Makrigiannakis A., Hatzakis A., Antsaklis A. Early hCG addition to rFSH for ovarian stimulation in IVF provides better results and the cDNA copies of the hCG receptor may be an indicator of successful stimulation. Reprod. Biol. Endocrinol. 2009;7:110. DOI 10.1186/1477­7827­7­110.

7. Ertzeid G., Storeng R. Adverse effects of gonadotrophin treatment on preand postimplantation development in mice. J. Reprod. Fertil. 1992;96:649­655. DOI 10.1530/jrf.0.0960649.

8. Fournier T., Guibourdenche J., Evain­Brion D. Review: hCGs: different sources of production, different glycoforms and functions. Placenta. 2015;36(1):60. DOI 10.1016/j.placenta.2015.02.002.

9. Hasegawa A., Mochida K., Inoue H., Noda Y., Endo T., Watanabe G., Ogura A. High­yield superovulation in adult mice by anti­inhibin serum treatment combined with estrous cycle synchronization. Biol. Reprod. 2016;94(1):21. DOI 10.1095/biolreprod.115.134023.

10. Henningsen A.A., Gissler M., Skjaerven R., Bergh C., Tiitinen A., Romundstad L.B., Wennerholm U.B., Lidegaard O., Nyboe Andersen A., Forman J.L., Pinborg A. Trends in perinatal health after assisted reproduction: a Nordic study from the CoNARTaS group. Hum. Reprod. 2015;30:710­716. DOI 10.1093/humrep/deu345.

11. Hogan B., Beddington R., Costantini F., Lacy E. Manipulating the Mouse Embryo. A Laboratory Manual. 2nd ed., New York; Cold Spring Harbor: Cold Spring Harbor Laboratory, 1994.

12. Homburg R. Management of infertility and prevention of ovarian hyperstimulation in women with polycystic ovary syndrome. Best Pract. Res. Clin. Obstet. Gynaecol. 2004;18:773­788. DOI 10.1016/j.bpobgyn.2004.05.006.

13. Kane N., Kelly R., Saunders P.T., Critchley H.O. Proliferation of uterine natural killer cells is induced by human chorionic gonadotropin and mediated via the mannose receptor. Endocrinology. 2009;150: 2882­2888. DOI 10.1210/en.2008­1309.

14. Keay S.D., Vatish M., Karteris E., Hillhouse E.W., Randeva H.S. The role of hCG in reproductive medicine. Br. J. Obstset. Gynecol. 2004; 111(11):1218. DOI 10.1111/j.1471­0528.2004.00412.x.

15. Lee M., Ahn J.I., Lee A.R., Ko D.W., Yang W.S., Lee G., Ahn J.Y., Lim J.M. Adverse effect of superovulation treatment on maturation, function and ultrastructural integrity of murine oocytes. Mol. Cells. 2017;40(8):558­566. DOI 10.14348/molcells.2017.0058.

16. Li S., Wang J., Cheng Y., Zhou D., Yin T., Xu W., Yu N., Yang J. Intrauterine administration of hCG­activated autologous human peripheral blood mononuclear cells (PBMC) promotes live birth rates in frozen/thawed embryo transfer cycles of patients with repeated implantation failure. J. Reprod. Immunol. 2017;119:15­22. DOI 10.1016/j.jri.2016.11.006.

17. Makrigiannakis A., Vrekoussis T., Zoumakis E., Kalantaridou S.N., Jeschke U. The role of hCG in implantation: A mini­review of molecular and clinical evidence. Int. J. Mol. Sci. 2017;18(6):1305. DOI 10.3390/ijms18061305.

18. Redina O.E., Amstislavsky S.Ya., Maksimovsky L.F. Induction of superovulation in DD mice at different stages of the oestrous cycle. J. Reprod. Fertil. 1994;(102):263­267. DOI 10.1530/jrf.0.1020263.

19. Sazonova A., Kallen K., Thurin­Kjellberg A., Wennerholm U.B., Bergh C. Obstetric outcome after in vitro fertilization with single or double embryo transfer. Hum. Reprod. 2011;26(2):442­450. DOI 10.1093/humrep/deq325.

20. Strug M.R., Su R., Young J.E., Dodds W.G., Shavell V.I., Diaz­Gimeno P., Ruiz­Alonso M., Simon C., Lessey B.A., Leach R.E., Fazleabas A.T. Intrauterine human chorionic gonadotropin infusion in oocy te donors promotes endometrial synchrony and induction of early decidual markers for stromal survival: A randomized clinical trial. Hum. Reprod. 2016;31:1552­1561. DOI 10.1093/humrep/dew080.

21. Takeo T., Nakagata N. Superovulation using the combined administra tion of inhibin antiserum and equine chorionic gonadotropin increa ses the number of ovulated oocytes in C57BL/6 female mice. PLoS One. 2015;10(5):e0128330. DOI 10.1371/journal.pone.0128330.

22. Tarin J.J., Perez­Albala S., Cano A. Stage of the estrous cycle at the time of pregnant mare’s serum gonadotropin injection affects the quality of ovulated oocytes in the mouse. Mol. Reprod. Dev. 2002; 61(3):398­405. DOI 10.1002/mrd.10042.

23. Wang Y., Ock S.A., Chian R.C. Effect of gonadotrophin stimulation on mouse oocyte quality and subsequent embryonic development in vitro. Reprod. Biomed. Online. 2006;12(3):304­314. DOI 10.1016/S1472­6483(10)61002­4.


Review

Views: 834


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)