Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Polymorphism of lipid exchange genes in some populations of South and East Siberia

https://doi.org/10.18699/VJ19.578

Abstract

Lipid metabolism disorders underlie the pathogenesis of a number of diseases. Indigenous peoples of Siberia have a specific genetically determined type of metabolism supporting such lipid blood parameters that favor increased consumption (in comparison with Caucasians) of animal products. At the same time, indigenous Siberian ethnic groups are less susceptible to metabolic diseases. The objective of the presented study was to investigate the allele frequencies of lipid metabolism genes in indigenous populations of Siberia to identify the ethnic features of allele frequency distribution for polymorphic variants in genes CETP (G1264A, rs5882), LPL (C1791G, rs328) and FTO (C83401A, rs8050136) in the samples taken from Buryats, Teleuts and Russians of Eastern Siberia, and to compare them with data on world populations. Samples of the Eastern (N = 132) and Western (N = 278) Buryats, Teleuts (N = 120), Russians (N = 122) and persons of mixed Buryat-Russian origin (N = 56) were genotyped by real-time PCR using competitive TaqMan-probes. The obtained results have for the first time demonstrated that the CETP and FTO allele frequencies in the Buryat samples are intermediate between European and East Asian populations. Significantly lower incidence of the obesity-assossiated 83401A allele of the FTO gene has been shown in Buryats, compared with Russians, which is consistent with lower susceptibility of the indigenous ethnic groups to metabolic disorders. There have been no population differences in the distribution of LPL gene polymorphic variants associated with dyslipidemia, which means they probably do not contribute to the ethnic characteristics of the lipid profile. The intermediate frequencies of the CETP 1264G and FTO 83401A alleles found in the metis group demonstrate that the metabolic disorders associated with these variants can be rather expected in the descendants of mixed marriages than among Buryats. It has also been demonstrated that Teleuts differ by FTO 83401A allele frequency from some of the European groups and have the lowest detected frequency of the allele CETP 1264G associated with the favorable lipid blood parameters.

About the Authors

L. E. Tabikhanova
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


L. P. Osipova
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


E. N. Voronina
Institute of Chemical Biology and Fundamental Medicine, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


A. O. Bragin
Novosibirsk State University
Russian Federation
Novosibirsk


M. L. Filipenko
Institute of Chemical Biology and Fundamental Medicine, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


References

1. Babenko V.N., Babenko R.O., Gamieldien G., Markel A.L. FTO haplotyping underlines high obesity risk for European populations. BMC Med. Genomics. 2019;12(2):46. DOI 10.1186/s12920­019­0491­x.

2. Bairova T.A., Dolgikh V.V., Kolesnikova L.I., Pervushina O.A. Nutriciogenetics and risk factors of cardiovascular disease: associated research in Eastern Siberia populations. Byulleten’ VSNTs SO RAMN = Bulletin ESSC SB RAMS. 2013;4(92):87­92. (in Russian).

3. Bardymova T.P., Protasov K.V., Donirova O.S., Tsyretorova S.S., Berezina M.V. Ethnic features of myocardial infarction and diabetes mellitus in patients of the Buryat population. Abstracts from the VII Russian Diabetology Congress “Diabetes mellitus in the 21st century: time to unite efforts”, 2015 Feb. 24–27. Moscow, 2015;121. (in Russian).

4. Cahua­Pablo J.A., Cruz M., Méndez­Palacios A., AntúnezOrtiz D.L., Vences­Velázquez A., Alarcón­Romero L.C. Parra E.J., Tello­Flores V.A., Leyva­Vázquez M.A., Valladares­Salgado A., Pérez­Macedonio C.P., Flores­Alfaro E. Polymorphisms in the LPL and CETP genes and haplotype in the ESR1 gene are associated with metabolic syndrome in women from Southwestern Mexico. Int. J. Mol. Sci. 2015;16:21539­21554. DOI 10.3390/ijms160921539.

5. Chen B., Li Z., Chen J., Ji J., Shen J., Xu Y., Zhao Y., Liu D., Shen Y., Zhang W., Shen J., Wang Y., Shi Y. Association of fat mass and obesity­associated and retinitis pigmentosa guanosine triphosphatase (GTPase) regulator­interacting protein­1 like polymorphisms with body mass index in Chinese women. Endocr. J. 2018;65(7):783­791. DOI 10.1507/endocrj.EJ17­0554.

6. Chen J.J., Li Y.M., Zou W.Y., Fu J.L. Relationships between CETP genetic polymorphisms and Alzheimer’s disease risk: a meta­analysis. DNA Cell Biol. 2014;33(11):807­815. DOI 10.1089/dna.2013.2265.

7. Cyrus C., Vatte C., Al-Nafie A., Chathoth S., Al-Ali R., AlShehri A., Akhtar M.S., Almansori M., Al­Muhanna F., Keating B., Al­Ali A. The impact of common polymorphisms in CETP and ABCA1 genes with the risk of coronary artery disease in Saudi Arabians. Hum. Genomics. 2016;10(8). DOI 10.1186/s40246­016­0065­3.

8. Darenskaya M.A. Features of metabolic reactions in indigenous and migrant populations of Northern Russia and Siberia. Byulleten’ VSNTs SO RAMN = Bulletin ESSC SB RAMS. 2014;2(96):97­103. (in Russian).

9. Hallmark B., Karafet T.M., Hsieh P.H., Osipova L.P., Watkins J.C., Hammer M.F. Genomic evidence of local adaptation to climate and diet in indigenous Siberians. Mol. Biol. Evol. 2018;36(2):315­327. DOI 10.1093/molbev/msy211.

10. Hosseini­Esfahani F., Esfandiar Z., Mirmiran P., Daneshpour M.S., Ghanbarian A., Azizi F. The interaction of cholesteryl ester transfer protein gene variations and diet on changes in serum lipid profiles. Eur. J. Clin. Nutr. 2019; 73:1291­1298. DOI 10.1038/s41430­019­0397­x.

11. Hsieh P.H., Hallmark B., Watkins J.C., Karafet T.M., Osipova L.P., Gutenkunst R.N., Hammer M.F. Exome sequencing provides evidence of polygenic adaptation to a fat­rich animal diet in indigenous Siberian populations. Mol. Biol. Evol. 2017;34(11):2913­2926. DOI 10.1093/molbev/msx226.

12. Koch N.V., Lifschitz G.I., Voronina E.N. Approaches to the lipid metabolism genes polymorphism analysis in screening for atherosclerosis risk factors. Rossiyskiy Kardiologicheskiy Zhurnal = Russian Journal of Cardiology. 2014;10(114):53­-57. DOI 10.15829/1560­4071­2014­10­53­57. (in Russian).

13. Kudryavtseva E.A., Voronina E.N., Lifshits G.I., Krapivina N.A., Tsvetovskaya G.A., Filipenko M.L. No influence of polymorphic variants of genes INSIG2, FTO, GNB3 on the severity of obesity in patients with metabolic syndrome. Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya: Biologiya, klinicheskaya meditsina = Bulleten of Novosibirsk State University. Ser.: Biology, clinical medicine. 2010;8(3):32­39. (in Russian).

14. Lyudinina A.Yu., Potolitsyna N.N., Solonin Yu.G., Osadchuk L.V., Gutorova N.V., Petrova P.G., Troev I.P., Ostobunaev V.V., Boyko E.R. Lipid profile in men of Komi and Yakut ethnic groups with overweight and obesity. Ekologiya Cheloveka = Human Ecology. 2014;1:13­19. (in Russian).

15. Oteva E.A., Maslennikov A.V., Nikolaeva A.A., Osipova L.P., Evseeva O.L., Sherental’ I.S., Filimonova T.A., Pikovskaja N.V. Features of serum lipid composition in northern Selkups. Terapevticheskiy Arkhiv = Therapeutic Archive. 1993;65(1):21­24. (in Russian).

16. Ovsyannikova O.V., Podkhomutnikov V.M., Kolbasko A.V., Luzina F.A., Gus’kova E.V. Cardiovascular disease in rural Kuzbass aborigines – Teleut. Rossiyskiy Kardiologicheskiy Zhurnal = Russian Journal of Cardiology. 2007;12(6):59­62. (in Russian).

17. Panin L.E. Energy Aspects of Adaptation. Leningrad, 1978. (in Russian).

18. Park S.L., Cheng I., Pendergrass S.A., Kucharska­Newton A.M., Lim U., Ambite J.L., Caberto C.P., Monroe K.R., Schumacher F., Hindorff L.A., Oetjens M.T., Wilson S., Goodloe R.J., Love S.A., Henderson B.E., Kolonel L.N., Haiman C.A., Crawford D.C., North K.E., Heiss G., Ritchie M.D., Wilkens L.R., Le Marchand L. Association of the FTO obesity risk variant rs8050136 with percentage of energy intake from fat in multiple racial/ethnic populations. Am. J. Epidemiol. 2013;178(5):780­790. DOI 10.1093/aje/kwt028.

19. Polyakov L.M., Rozumenko A.A., Osipova L.P., Kunitsyn V.G., Goltsova T.V. Serum lipid spectrum of indigenous and alien population of Yamalo­Nenets Autonomous Okrug. Sibirskiy Nauchnyy Meditsinskiy Zhurnal = The Siberian Scientific Medical Journal. 2015;35(6):66­69. (in Russian).

20. Ren L., Ren X. Meta­analyses of four polymorphisms of lipoprotein lipase associated with the risk of Alzheimer’s disease. Neurosci. Lett. 2016;619:73­78. DOI 10.1016/j.neulet.2016.03.021.

21. Sagoo G.S., Tatt I., Salanti G., Butterworth A.S., Sarwar N., Maarle M., Jukema J.W., Wiman B., Kastelein J.J., Bennet A.M., Faire U., Danesh J., Higgins J.P. Seven lipoprotein lipase gene polymorphisms, lipid fractions, and coronary disease: a huge association review and meta­analysis. Am. J. Epidemiol. 2008;168(11):1233­1246. DOI 10.1093/aje/kwn235.

22. Salminen L.E., Schofield P.R., Pierce K.D., Luo X., Zhao Y., Laidlaw D.H., Cabeen R.P., Conturo T.E., Lane E.M., Heaps J.M., Bolzenius J.D., Baker L.M., Cooley S.A., Scott S., Cagle L.M., Paul R.H. Genetic markers of cholesterol transport and gray matter diffusion: a preliminary study of the CETP I405V polymorphism. J. Neural. Transm. 2015;122:1581­1592. DOI 10.1007/s00702­015­1434­0.

23. Sanders A.E., Wang C., Katz M., Derby C.A., Barzilai N., Ozelius L., Lipton R.B. Association of a functional polymorphism in the cholesteryl ester transfer protein (CETP) gene with memory decline and incidence of dementia. JAMA. 2010;303(2):150­158. DOI 10.1001/jama.2009.1988.

24. Semenova N.V., Madaeva I.M., Darenskaya M.A., Gavrilova O.A., Zhambalova R.M., Kolesnikova L.I. Lipid profile in menopausal women of two ethnic groups. Acta Biomedica Scientifica. 2018; 3(3):93-98. DOI 10.29413/ABS.2018­3.3.14. (in Russian).

25. Sevostyanova Ye.V. Some features of human lipid and carbohydrate metabolism in the North. Byulleten’ Sibirskoy Meditsiny = Bulletin of Siberian Medicine. 2013;12(1):93­-100. (in Russian).

26. Shatwan I.M., Minihane A.M., Williams C.M., Lovegrove J.A., Jackson K.G., Vimaleswaran K.S. Impact of lipoprotein lipase gene polymorphism, S447X, on postprandial triacylglycerol and glucose response to sequential meal ingestion. Int. J. Mol. Sci. 2016;17(3):397. DOI 10.3390/ijms17030397.

27. Suplotova L.A., Vakhromeeva K.A., Belchikova L.N., Nosikov V.V. Evalaution of association of genetic markers with type 2 diabetes in Russian population. Meditsinskaya Nauka i Obrazovanie Urala = Medical Science and Education of Ural. 2014;4:51­57. (in Russian).

28. Tabikhanova L.E., Osipova L.P., Churkina T.V., Voronina E.N., Filipenko M.L. Genetic polymorphism of CYP1A1 and CYP2D6 in populations of Buryats, Teleuts and Russians of Eastern Siberia. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018a;22(2):205­211. DOI 10.18699/VJ18.348. (in Russian).

29. Tabikhanova L.E., Osipova L.P., Churkina T.V., Voronina E.N., Filipenko M.L. Genetic polymorphism of F2, F5 and VKORC1 in populations of Buryats, Teleuts and Russians of Eastern Siberia. Molekulyarnaya Meditsina = Molecular Medicine. 2018b;16(3):31­36. DOI 10.29296/249994902018­03­06. (in Russian).

30. Tang W., Apostol G., Schreiner P.J., Jacobs D.R., Boerwinkle E., Fornage M. Associations of lipoprotein lipase gene polymorphisms with longitudinal plasma lipid trends in young adults: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Circ. Cardiovasc. Genet. 2010;3(2):179­186. DOI 10.1161/CIRCGENETICS.109.913426.

31. Teran-Garcıa M., Despres J.P., Tremblay A., Bouchard C. Effects of cholesterol ester transfer protein (CETP) gene on adiposity in response to long­term overfeeding. Atherosclerosis. 2008;196:455­460.

32. The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56­65. DOI 10.1038/nature11632.

33. Thompson А., Angelantonio E., Sarwar N., Erqou S., Saleheen D., Dullaart R., Keavney B., Ye Z., Danesh J. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA. 2008;299(23):2777­2788. DOI 10.1001/jama.299.23.2777.

34. Tsygankova D.P., Mulerova T.A., Ogarkov M.Yu., Mikhalina E.V., Saarela E.Yu., Kazachek Ya.V., Kuzmina A.A., Barbarash O.L. Indicators of lipid metabolism in the inhabitants of Mountain Shoria: ethnic peculiarities and the impact of living conditions. Ateroskleroz i Dislipidemii = The Journal of Atherosclerosis and Dyslipidemias. 2017;1(26):68­76. (in Russian).

35. Webster R.J., Warrington N.M., Weedon M.N., Hattersley A.T., McCaskie P.A., Beilby J.P., Palmer L.J., Frayling T.M. The association of common genetic variants in the APOA5, LPL and GCK genes with longitudinal changes in metabolic and cardiovascular traits. Diabetologia. 2009;52:106­114. DOI 10.1007/s00125­008­1175­9.

36. Yang Y., Liu B., Xia W., Yan J., Liu H.Y., Hu L., Liu S.M. FTO genotype and type 2 diabetes mellitus: spatial analysis and meta­analysis of 62 case­control studies from different regions. Genes. 2017;8(2):70. DOI 10.3390/genes8020070.

37. Yu L., Shulman J.M., Chibnik L., Leurgans S., Schneider J.A., Jager P.L., Bennett D.A. The CETP I405V polymorphism is associated with an increased risk of Alzheimer’s disease. Aging Cell. 2012;11(2):228­233. DOI 10.1111/j.14749726.2011.00777.x.


Review

Views: 808


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)