Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Changes induced in mouse lipid metabolism by simultaneous impact of antisense oligonucleotide derivatives to apoB, PCSK9, and apoCIII mRNAs

https://doi.org/10.18699/VJ19.579

Abstract

Development of new drugs able to decrease the level of “bad” cholesterol, in particular, based on antisense oligonucleotide derivatives (ASOs), remains relevant for the patients with familial hypercholesterolemia and/or intolerant to statins. The goal of the work was to assess the changes in the lipid metabolism caused by variants of joint impact of the ASOs targeted to the mRNAs of its key genes: apoB, PCSK9, and apoCIII. Female C57BL/6J mice; nuclease-protected 13- and 20-nucleotide ASOs, and standard protocols for quantification of lipoproteins (HDL CHL, non-HDL CHL, and total CHL) and ALT in the blood serum were used in the work. The following combinations of ASOs were four times injected to the mouse caudal vein: 1) ASO to apoB, 2) ASO to apoCIII, 3) ASO to apoB and ASO to PCSK9, 4) ASO to apoB, ASO to PCSK9, and ASO to apoCIII, 5) ASO to apoB (three doses), ASO to PCSK9, and ASO to apoCIII (two doses), 6) ASO to PCSK9 and (ASO to apoCIII – only in the fourth administration). Triple weekly administration of these ASO combinations resulted in a decrease in non-HDL CHL by 25, 16, 35, 47, 60, and 7 %, respectively, as compared with the control and 1.8-, 1.5-, 1.9-, 2.4-, 3.1, and 1.24-fold higher HDL CHL/ non-HDL CHL ratio. The subsequent ASO injection with concurrent switching to a high-fat diet after 1 week resulted in a decrease in the non-HDL CHL by 28, 2, 28, 70, 33, and 49 % for ASOs (1–6), respectively, as compared with the control; the HDL CHL/non-HDL CHL ratio was 1.5-, 1.1-, 2-, 3.7-, 1.9-, and 2-fold better. The ALT concentration for all ASO combinations remained within the norm for the control animals, demonstrating the absence of any hepatotoxic effect. The best efficiency of ASOs requires selection of concentrations for single ASOs and their combinations as well as of the order and timing of administration. Thus, a new antisense approach is proposed.

About the Authors

S. I. Oshevski
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


Y. I. Ragino
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


E. V. Kashtanova
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


Y. V. Polonskaya
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


E. M. Stakhneva
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


V. P. Nikolin
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


N. A. Popova
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


N. A. Kolchanov
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


M. I. Voevoda
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University; Federal Research Center of Fundamental and Translational Medicine
Russian Federation
Novosibirsk


References

1. Oshevski S.I., Ragino Y.I., Kashtanova E.V., Polonskaya Y.V., Stakhneva E.M., Nikolin V.P., Popova N.A., Korablev A.N., Kolchanov N.A., Voevoda M.I. The efficacy of simultaneous action of several antisense oligonucleotide derivatives by the example of lipid metabolism in mice. Ateroskleroz = Atherosclerosis. 2015;11(3):7278. (in Russian)

2. Antisense Drug Technology: Principles, Strategies, and Applications. Second Edition. Crooke S.T. (Ed.). CRC Press, 2008.

3. Aoki Y., Yokota T., Nagata T., Nakamura A., Tanihata J., Saito T., Duguez S.M., Nagaraju K., Hoffman E.P., Partridge T., Takeda S. Bodywide skipping of exons 45-55 in dystrophic mdx52 mice by systemic antisense delivery. Proc. Natl. Acad. Sci. USA. 2012;109(34): 13763-13768. DOI 10.1073/pnas.1204638109.

4. Burdick A.D., Sciabola S., Mantena S.R., Hollingshead B.D., Stanton R., Warneke J.A., Zeng M., Martsen E., Medvedev A., Makarov S.S., Reed L.A., Davis J.W. 2nd, Whiteley L.O. Sequence motifs associated with hepatotoxicity of locked nucleic acid–modified antisense oligonucleotides. Nucleic Acids Res. 2014;42(8):4882-4891. DOI 10.1093/nar/gku142.

5. Echigoya Y., Nakamura A., Nagata T., Urasawa N., Lim K.R.Q., Trieu N., Panesar D., Kuraoka M., Moulton H.M., Saito T., Aoki Y., Iversen P., Sazani P., Kole R., Maruyama R., Partridge T., Takeda S., Yokota T. Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. USA. 2017;114(16):42134218. DOI 10.1073/pnas.1613203114.

6. Geary R.S., Baker B.F., Crooke S.T. Clinical and preclinical pharmacokinetics and pharmacodynamics of mipomersen (Kynamro ® ): a second-generation antisense oligonucleotide inhibitor of apolipoprotein B. J. Clin. Pharmacokinet. 2015;54(2):133-146. DOI 10.1007/s40262-014-0224-4.

7. Gupta N., Fisker N., Asselin M.C., Lindholm M., Rosenbohm C., Ørum H., Elmén J., Seidah N.G., Straarup E.M. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One. 2010;5(5):e10682. DOI 10.1371/journal.pone.0010682.

8. Harth G., Zamecnik P.C., Tabatadze D., Pierson K., Horwitz M.A. Hairpin extensions enhance the efficacy of mycolyl transferase-specific antisense oligonucleotides targeting Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA. 2007;104(17):7199-7204. DOI 10.1073/pnas.0701725104.

9. Hegele R.A., Tsimikas S. Lipid-lowering agents. Circ. Res. 2019; 124(3):386-404. DOI 10.1161/CIRCRESAHA.118.313171.

10. Holmberg R., Refai E., Höög A., Crooke R.M., Graham M., Olivecrona G., Berggren P.O., Juntti-Berggren L. Lowering apolipoprotein CIII delays onset of type 1 diabetes. Proc. Natl. Acad. Sci. USA. 2011;108(26):10685-10689. DOI 10.1073/pnas.1019553108.

11. Panta R., Dahal K., Kunwar S. Efficacy and safety of mipomersen in treatment of dyslipidemia: A meta-analysis of randomized controlled trials. J. Clin. Lipidol. 2015;(2):217-225. DOI 10.1016/j.jacl.2014.12.006.

12. Straarup E.M., Fisker N., Hedtjärn M., Lindholm M.W., Rosenbohm C., Aarup V., Hansen H.F., Ørum H., Hansen J.B., Koch T. Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and nonhuman primates. Nucleic Acids Res. 2010;38(20):7100-7111. DOI 10.1093/nar/gkq457.

13. Subramanian R.R., Wysk M.A., Ogilvie K.M., Bhat A., Kuang B., Rockel T.D., Weber M., Uhlmann E., Krieg A.M. Enhancing antisense efficacy with multimers and multi-targeting oligonucleotides (MTOs) using cleavable linkers. Nucleic Acids Res. 2015;43(19):9123-9132. DOI 10.1093/nar/gkv992.

14. Van Poelgeest E.P., Swart R.M., Betjes M.G., Moerland M., Weening J.J., Tessier Y., Hodges M.R., Levin A.A., Burggraaf J. Acute kidney injury during therapy with an antisense oligonucleotide directed against PCSK9. Am. J. Kidney Dis. 2013;62(4):796-800. DOI 10.1053/j.ajkd.2013.02.359.

15. Visser M.E., Witztum J.L., Stroes E.S., Kastelein J.J. Antisense oligonucleotides for the treatment of dyslipidaemia. Eur. Heart J. 2012; 33(12):1451-1458. DOI 10.1093/eurheartj/ehs084.


Review

Views: 627


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)