Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Ассоциация длины теломер лейкоцитов и уровня специфических антител после вакцинации против клещевого энцефалита

https://doi.org/10.18699/VJ19.580

Полный текст:

Аннотация

Основным принципом индивидуализации вакцинаций является создание достаточной иммунной защиты организма при избегании излишней иммунизации. Отсюда возникает необходимость разработки методов прогнозирования величины иммунного ответа еще до проведения вакцинации. Длину теломер можно рассматривать как перспективный прогностический параметр для оценки иммунной реакции пациента при проведении вакцинации. Целью работы был анализ возможной ассоциации длины теломер лейкоцитов с уровнем специфических антител после вакцинации против клещевого энцефалита. В исследование было включено 55 мужчин и 40 женщин, ранее не вакцинированных против клещевого энцефалита и не имевших контактов с клещами. Вакцинацию проводили вакциной «ЭнцеВир». Через месяц после вакцинации анализировали уровень специфических антител IgG против вируса клещевого энцефалита с использованием тест-системы «ВектоВКЭ-IgG-стрип», а также длину теломер лейкоцитов с помощью количественной ПЦР в реальном времени. По уровню ответа на вакцинацию пациентов разделяли на нереагировавших (уровень IgG 0–100 МЕ/мл), низкореагировавших (уровень IgG 101–200 МЕ/мл) и высокореагировавших (уровень IgG выше 200 МЕ/мл). Длина теломер как минимум на уровне тенденции (p < 0.1) зависела как от ответа на вакцинацию, так и от возраста, уровня образования и наличия психоэмоционального стресса. С помощью общей линейной модели была выявлена ассоциация длины теломер с ответом на вакцинацию против клещевого энцефалита на уровне тенденции (p < 0.1) только у женщин. При попарном сравнении длина теломер у высокореагировавших женщин была достоверно выше, чем у нереагировавших. Таким образом, нами обнаружена ассоциация длины теломер лейкоцитов и уровня специфических антител после вакцинации против клещевого энцефалита у женщин. По-видимому, длину теломер лейкоцитов в крови можно рассматривать в качестве перспективного маркера для прогноза пролиферативного ответа лимфоцитов и величины иммунологической реакции пациента в ответ на вакцинацию.

Об авторах

Н. С. Юдин
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет; Научно-исследовательский институт терапии и профилактической медицины
Россия
Новосибирск


В. А. Белявская
Государственный научный центр вирусологии и биотехнологии «Вектор» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека
Россия
р. п. Кольцово, Новосибирская область


В. Н. Максимов
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет; Научно-исследовательский институт терапии и профилактической медицины
Россия
Новосибирск


Д. Е. Иванощук
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет; Научно-исследовательский институт терапии и профилактической медицины
Россия
Новосибирск


П. С. Орлов
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет; Научно-исследовательский институт терапии и профилактической медицины
Россия
Новосибирск


М. И. Воевода
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет; Научно-исследовательский институт терапии и профилактической медицины
Россия
Новосибирск


Список литературы

1. Билалова Г.П. Вопросы практического применения вакцины «Энцевир». Сиб. мед. журн. 2009;2:86-91.

2. Воробьева М.С., Ращепкина М.Н., Павлова Л.И., Быстрицкий Л.Д., Ставицкая Н.Х., Ильченко Т.Э., Билалова Г.П., Мищенко И.А., Шарова О.И. Вакцинопрофилактика клещевого энцефалита на современном этапе и препараты для ее реализации. Бюлл. сиб. медицины, 2006;5(S1):63-71.

3. Максимов В.Н., Малютина С.К., Орлов П.С., Иванощук Д.Е., Воропаева Е.Н., Бобак М., Воевода М.И. Длина теломер лейкоцитов как маркер старения и фактор риска развития возрастзависимых заболеваний у человека. Усп. геронтол. 2016;29(5):702-708.

4. Медуницын Н.В. Вакцинология. М.: Триада-Х, 2004.

5. Онищенко Г.Г. Распространение вирусных природноочаговых инфекций в Российской Федерации и меры по их профилактике. Эпидемиол. и инф. бол. 2000;4:4-8.

6. Спивак И.М., Михельсон В.М., Спивак Д.Л. Длина теломер, активность теломеразы, стресс и старение. Усп. геронтол. 2015;28(3): 441-448.

7. Юдин Н.С., Бархаш А.В., Максимов В.Н., Игнатьева Е.В., Ромащенко А.Г. Генетическая предрасположенность человека к заболеваниям, вызываемым вирусами семейства Flaviviridae. Молекуляр. биология. 2018;52(2):190-209. DOI 10.7868/S0026898418020039.

8. Astuti Y., Wardhana A., Watkins J., Wulaningsih W.; PILAR Research Network. Cigarette smoking and telomere length: A systematic review of 84 studies and meta-analysis. Environ. Res. 2017;158:480-489. DOI 10.1016/j.envres.2017.06.038.

9. Bellon M., Nicot C. Telomere dynamics in immune senescence and exhaustion triggered by chronic viral infection. Viruses. 2017;9(10). DOI 10.3390/v9100289.

10. Blackburn E.H., Epel E.S., Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193-1198. DOI 10.1126/science.aab3389.

11. Cawthon R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30(10):e47.

12. Cools H.J., Gussekloo J., Remmerswaal J.E., Remarque E.J., Kroes A.C. Benefits of increasing the dose of influenza vaccine in residents of long-term care facilities: a randomized placebo-controlled trial. J. Med. Virol. 2009;81(5):908-914. DOI 10.1002/jmv.21456.

13. de Punder K., Heim C., Wadhwa P.D., Entringer S. Stress and immunosenescence: The role of telomerase. Psychoneuroendocrinology. 2018;101:87-100. DOI 10.1016/j.psyneuen.2018.10.019.

14. Freitas-Simoes T.M., Ros E., Sala-Vila A. Nutrients, foods, dietary patterns and telomere length: Update of epidemiological studies and randomized trials. Metabolism. 2016;65(4):406-415. DOI 10.1016/j.metabol.2015.11.004.

15. Gardner M., Bann D., Wiley L., Cooper R., Hardy R., Nitsch D., MartinRuiz C., Shiels P., Sayer A.A., Barbieri M., Bekaert S., Bischoff C., Brooks-Wilson A., Chen W., Cooper C., Christensen K., De Meyer T., Deary I., Der G., Diez Roux A., Fitzpatrick A., Hajat A., HalaschekWiener J., Harris S., Hunt S.C., Jagger C., Jeon H.S., Kaplan R., Kimura M., Lansdorp P., Li C., Maeda T., Mangino M., Nawrot T.S., Nilsson P., Nordfjall K., Paolisso G., Ren F., Riabowol K., Robertson T., Roos G., Staessen J.A., Spector T., Tang N., Unryn B., van der Harst P., Woo J., Xing C., Yadegarfar M.E., Park J.Y., Young N., Kuh D., von Zglinicki T., Ben-Shlomo Y.; Halcyon study team. Gender and telomere length: systematic review and meta-analysis. Exp. Gerontol. 2014;51:15-27. DOI 10.1016/j.exger.2013.12.004.

16. Gritsun T.S., Lashkevich V.A., Gould E.A. Tick-borne encephalitis. Antiviral Res. 2003;57(1-2):129-146.

17. Gröndahl-Yli-Hannuksela K., Vahlberg T., Ilonen J., Mertsola J., He Q. Polymorphism of IL-10 gene promoter region: association with T cell proliferative responses after acellular pertussis vaccination in adults. Immunogenetics. 2016;68(9):733-741. DOI 10.1007/s00251-016-0923-0.

18. Haglund M., Günther G. Tick-borne encephalitis – pathogenesis, clinical course and long-term follow-up. Vaccine. 2003;21(Suppl. 1): S11-S18.

19. Haralambieva I.H., Dhiman N., Ovsyannikova I.G., Vierkant R.A., Pankratz V.S., Jacobson R.M., Poland G.A. 2ʹ-5ʹ-Oligoadenylate synthetase single-nucleotide polymorphisms and haplotypes are associated with variations in immune responses to rubella vaccine. Hum. Immunol. 2010;71(4):383-391. DOI 10.1016/j.humimm.2010.01.004.

20. Harley C.B., Futcher A.B., Greider C.W. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345(6274):458-460.

21. Heinz F.X., Kunz C. Tick-borne encephalitis and the impact of vaccination. Arch. Virol. Suppl. 2004;18:201-205.

22. Hodes R.J., Hathcock K.S., Weng N.P. Telomeres in T and B cells. Nat. Rev. Immunol. 2002;2(9):699-706.

23. Jääskeläinen A., Tonteri E., Pieninkeroinen I., Sironen T., Voutilainen L., Kuusi M., Vaheri A., Vapalahti O. Siberian subtype tickborne encephalitis virus in Ixodes ricinus in a newly emerged focus, Finland. Ticks Tick Borne Dis. 2016;7(1):216-223. DOI 10.1016/j.ttbdis.2015.10.013.

24. Karelis G., Bormane A., Logina I., Lucenko I., Suna N., Krumina A., Donaghy M. Tick-borne encephalitis in Latvia 1973–2009: epidemiology, clinical features and sequelae. Eur. J. Neurol. 2012;19(1): 62-68. DOI 10.1111/j.1468-1331.2011.03434.x.

25. Laberthonniere C., Magdinier F., Robin J.D. Bring it to an end: does telomeres size matter? Cells. 2019;8(1):pii: E30. DOI 10.3390/cells8010030.

26. Lin Y., Damjanovic A., Metter E.J., Nguyen H., Truong T., Najarro K., Morris C., Longo D.L., Zhan M., Ferrucci L., Hodes R.J., Weng N.P. Age-associated telomere attrition of lymphocytes in vivo is co-ordinated with changes in telomerase activity, composition of lymphocyte subsets and health conditions. Clin. Sci. (Lond.). 2015;128(6): 367-377. DOI 10.1042/CS20140481.

27. Mukherjee A.K., Sharma S., Sengupta S., Saha D., Kumar P., Hussain T., Srivastava V., Roy S.D., Shay J.W., Chowdhury S. Telomere lengthdependent transcription and epigenetic modifications in promoters remote from telomere ends. PLoS Genet. 2018;14(11):e1007782. DOI 10.1371/journal.pgen.1007782.

28. Muszkat M., Friedman G., Dannenberg H.D., Greenbaum E., Lipo M., Heymann Y., Zakay-Rones Z., Ben-Yehuda A. Response to influenza vaccination in community and in nursing home residing elderly: relation to clinical factors. Exp. Gerontol. 2003;38(10):1199-1203.

29. Najarro K., Nguyen H., Chen G., Xu M., Alcorta S., Yao X., Zukley L., Metter E.J., Truong T., Lin Y., Li H., Oelke M., Xu X., Ling S.M.,Longo D.L., Schneck J., Leng S., Ferrucci L., Weng N.P. Telomere length as an indicator of the robustness of B- and T-cell response to influenza in older adults. J. Infect. Dis. 2015;212(8):1261-1269. DOI 10.1093/infdis/jiv202.

30. Rizvi S., Raza S.T., Mahdi F. Telomere length variations in aging and age-related diseases. Curr. Aging Sci. 2014;7(3):161-167.

31. Robin J.D., Ludlow A.T., Batten K., Magdinier F., Stadler G., Wagner K.R., Shay J.W., Wright W.E. Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes Dev. 2014;28(22):2464-2476. DOI 10.1101/gad.251041.114.

32. Sagawa M., Kojimahara N., Otsuka N., Kimura M., Yamaguchi N. Immune response to influenza vaccine in the elderly: association with nutritional and physical status. Geriatr. Gerontol. Int. 2011;11(1): 63-68. DOI 10.1111/j.1447-0594.2010.00641.x.

33. Sambrook J., Russell D.W. The Condensed Protocols from Molecular Cloning: a Laboratory Manual, Cold Spring Harbor; New York: Cold Spring Harbor Laboratory Press, 2006.

34. Shawi M., Autexier C. Telomerase, senescence and ageing. Mech. Ageing Dev. 2008;129(1-2):3-10. DOI 10.1016/j.mad.2007.11.007.

35. Son N.H., Joyce B., Hieatt A., Chrest F.J., Yanovski J., Weng N.P. Stable telomere length and telomerase expression from naïve to memory B- lymphocyte differentiation. Mech. Ageing Dev. 2003;124(4): 427-432.

36. Steffen R. Tick-borne encephalitis (TBE) in children in Europe: Epidemiology, clinical outcome and comparison of vaccination recommendations. Ticks Tick Borne Dis. 2019;10(1):100-110. DOI 10.1016/j.ttbdis.2018.08.003.

37. Valarcher J.F., Hagglund S., Juremalm M., Blomqvist G., Renstrom L., Zohari S., Leijon M., Chirico J. Tick-borne encephalitis. Rev. Sci. Tech. 2015;34(2):453-466.

38. Veje M., Nolskog P., Petzold M., Bergström T., Lindén T., Peker Y., Studahl M. Tick-borne encephalitis sequelae at long-term followup: a self-reported case-control study. Acta Neurol. Scand. 2016; 134(6):434-441. DOI 10.1111/ane.12561.

39. Verschoor C.P., Lelic A., Parsons R., Evelegh C., Bramson J.L., Johnstone J., Loeb M.B., Bowdish D.M.E. Serum C-reactive protein and congestive heart failure as significant predictors of herpes zoster vaccine response in elderly nursing home residents. J. Infect. Dis. 2017;216(2):191-197. DOI 10.1093/infdis/jix257.

40. Wang J., Dong X., Cao L., Sun Y., Qiu Y., Zhang Y., Cao R., Covasa M., Zhong L. Association between telomere length and diabetes mellitus: A meta-analysis. J. Int. Med. Res. 2016;44(6):1156-1173. DOI 10.1177/0300060516667132.

41. Weng N.P. Telomeres and immune competency. Curr. Opin. Immunol. 2012;24(4):470-475. DOI 10.1016/j.coi.2012.05.001.

42. Weng N.P., Granger L., Hodes R.J. Telomere lengthening and telomerase activation during human B cell differentiation. Proc. Natl. Acad. Sci. USA. 1997;30;94(20):10827-10832.

43. Weng N.P., Levine B.L., June C.H., Hodes R.J. Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc. Natl. Acad. Sci. USA. 1995;92(24):11091-11094.

44. Willis M., Reid S.N., Calvo E., Staudinger U.M., Factor-Litvak P. A scoping systematic review of social stressors and various measures of telomere length across the life course. Ageing Res. Rev. 2018;47:89-104. DOI 10.1016/j.arr.2018.07.006.

45. Yudin N.S., Igoshin A.V., Lutova S.L., Gon Ya., Voevoda M.I., Belyavskaya V.A. Association between polymorphisms in genes encoding 2ʹ-5ʹ-oligoadenylate synthetases and the humoral immune response upon vaccination against tick-borne encephalitis. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(4):445-451. DOI 10.18699/VJ18.381. (in Russian)


Просмотров: 87


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)