Pharmacological effects of fibroblast growth factor 21 are sex-specific in mice with the lethal yellow (Ay) mutation








https://doi.org/10.18699/VJ20.40-o
- Р Р‡.МессенРТвЂВВВВВВВжер
- РћРТвЂВВВВВВВнокласснРСвЂВВВВВВВРєРСвЂВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВровать ссылку
Full Text:
Abstract
About the Authors
E. N. MakarovaRussian Federation
Novosibirsk
T. V. Yakovleva
Russian Federation
Novosibirsk
N. Yu. Balyibina
Russian Federation
Novosibirsk
K. O. Baranov
Russian Federation
Novosibirsk
E. I. Denisova
Russian Federation
Novosibirsk
A. D. Dubinina
Russian Federation
Novosibirsk
N. A. Feofanova
Russian Federation
Novosibirsk
N. M. Bazhan
Russian Federation
Novosibirsk
References
1. Bazhan N., Jakovleva T., Balyibina N., Dubinina A., Denisova E., Feofanova N., Makarova E. Sex dimorphism in the Fgf21 gene expression in liver and adipose tissues is dependent on the metabolic condition. Online J. Biol. Sci. 2019;19(1):28-36. https://doi.org/10.3844/ojbsci.2019.28.36.
2. Berglund E.D., Liu T., Kong X., Sohn J.-W., Vong L., Deng Z., Lee C.E., Lee S., Williams K.W., Olson D.P., Scherer P.E., Lowell B.B., Elmquist J.K. Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia. Nat. Neurosci. 2014;17(7):911-913. https://doi.org/10.1038/nn.3737.
3. BonDurant L.D., Ameka M., Naber M.C., Markan K.R., Idiga S.O., Acevedo M.R., Walsh S.A., Ornitz D.M., Potthoff M.J. FGF21 regulates metabolism through adipose-dependent and -independent mechanisms. Cell Metab. 2017;25(4):935-944.e4. https://doi.org/10.1016/j.cmet.2017.03.005.
4. BonDurant L.D., Potthoff M.J. Fibroblast growth factor 21: a versatile regulator of metabolic homeostasis. Annu. Rev. Nutr. 2018;38(1): 173-196. https://doi.org/10.1146/annurev-nutr-071816-064800.
5. Bultman S.J., Michaud E.J., Woychik R.P. Molecular characterization of the mouse agouti locus. Cell. 1992;71(7):1195-1204.
6. Camporez J.P.G., Jornayvaz F.R., Petersen M.C., Pesta D., Guigni B.A., Serr J., Zhang D., Kahn M., Samuel V.T., Jurczak M.J., Shulman G.I. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology. 2013;154(9):3099-3109. https://doi.org/10.1210/en.2013-1191.
7. Chukijrungroat N., Khamphaya T., Weerachayaphorn J., Songserm T., Saengsirisuwan V. Hepatic FGF21 mediates sex differences in highfat high-fructose diet-induced fatty liver. Am. J. Physiol. Endocrinol. Metab. 2017;313(2):E203-E212. https://doi.org/10.1152/ajpendo.00076.2017.
8. Clayton J.A. Applying the new SABV (sex as a biological variable) policy to research and clinical care. Physiol. Behav. 2018;1872-1875. https://doi.org/10.1016/j.physbeh.2017.08.012.
9. Coskun T., Bina H.A., Schneider M.A., Dunbar J.D., Hu C.C., Chen Y., Moller D.E., Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008;149(12):6018-6027. https://doi.org/10.1210/en.2008-0816.
10. Della Torre S., Lolli F., Ciana P., Maggi A. Sexual dimorphism and estrogen action in mouse liver. Adv. Exp. Med. Biol. 2017;1043: 141-151.
11. Fani L., Bak S., Delhanty P., van Rossum E.F.C., van den Akker E.L.T. The melanocortin-4 receptor as target for obesity treatment: a systematic review of emerging pharmacological therapeutic options. Int. J. Obes. (Lond.) 2014;38(2):163-169. https://doi.org/10.1038/ijo.2013.80.
12. Farooqi I.S., Keogh J.M., Yeo G.S.H., Lank E.J., Cheetham T., O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 2003;348(12):1085-1095. https://doi.org/10.1056/NEJMoa022050.
13. Gasparin F.R.S., Carreño F.O., Mewes J.M., Gilglioni E.H., Pagadigorria C.L.S., Natali M.R.M., Utsunomiya K.S., Constantin R.P., Ouchida A.T., Curti C., Gaemers I.C., Elferink R.P.J.O., Constantin J., Ishii-Iwamoto E.L. Sex differences in the development of hepatic steatosis in cafeteria diet-induced obesity in young mice. Biochim. Biophys. Acta Mol. Basis Dis. 2018;1864(7):2495-2509. https://doi.org/10.1016/j.bbadis.2018.04.004.
14. Girardet C., Butler A.A. Neural melanocortin receptors in obesity and related metabolic disorders. Biochim. Biophys. Acta. 2014;1842(3): 482-494. https://doi.org/10.1016/j.bbadis.2013.05.004.
15. Grove K.L., Fried S.K., Greenberg A.S., Xiao X.Q., Clegg D.J. A microarray analysis of sexual dimorphism of adipose tissues in highfat-diet-induced obese mice. Int. J. Obes. (Lond.). 2010;34(6):989-1000. https://doi.org/10.1038/ijo.2010.12.
16. Jackson V.M., Breen D.M., Fortin J.-P., Liou A., Kuzmiski J.B., Lomis A.K., Rives M.-L., Shah B., Carpino P.A. Latest approaches for the treatment of obesity. Expert Opin. Drug Discov. 2015;10(8): 825-839. https://doi.org/10.1517/17460441.2015.1044966.
17. Kharitonenkov A., Shiyanova T.L., Koester A., Ford A.M., Micanovic R., Galbreath E.J., Sandusky G.E., Hammond L.J., Moyers J.S., Owens R.A., Gromada J., Brozinick J.T., Hawkins E.D., Wroblewski V.J., Li D.-S., Mehrbod F., Jaskunas S.R., ShanafeltA.B. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 2005;115(6): 1627-1835. https://doi.org/10.1172/JCI23606.
18. Lan T., Morgan D.A., Rahmouni K., Sonoda J., Fu X., Burgess S.C., Holland W.L., Kliewer S.A., Mangelsdorf D.J. FGF19, FGF21, and an FGFR1/β-Klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab. 2017;26(5):709-718.e3. https://doi.org/10.1016/j.cmet.2017.09.005.
19. Larson K.R., Chaffin A.T.-B., Goodson M.L., Fang Y., Ryan K.K. Fibroblast growth factor-21 controls dietary protein intake in male mice. Endocrinology. 2019;160(5):1069-1080. https://doi.org/10.1210/en.2018-01056.
20. Lee Y.-H., Kim S.H., Kim S.-N., Kwon H.-J., Kim J.-D., Oh J.Y., Jung Y.-S. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease. Oncotarget. 2016;7(30):46959-46971. https://doi.org/10.18632/oncotarget.10506.
21. Markan K.R., Naber M.C., Ameka M.K., Anderegg M.D., Mangelsdorf D.J., Kliewer S.A., Mohammadi M., Potthoff M.J. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes. 2014;63(12):4057-4063. https://doi.org/10.2337/db14-0595.
22. Mauvais-Jarvis F., Arnold A.P., Reue K. A guide for the design of pre-clinical studies on sex differences in metabolism. Cell Metab. 2017;25(6):1216-1230. https://doi.org/10.1016/j.cmet.2017.04.033.
23. Michaud E.J., Mynatt R.L., Miltenberger R.J., Klebig M.L., Wilkinson J.E., Zemel M.B., Wilkison W.O., Woychik R.P. Role of the agouti gene in obesity. J. Endocrinol. 1997;155(2):207-209.
24. Morton G.J., Mystkowski P., Matsumoto A.M., Schwartz M.W. Increased hypothalamic melanin concentrating hormone gene expression during energy restriction involves a melanocortin-independent, estrogen-sensitive mechanism. Peptides. 2004;25(4):667-674. https://doi.org/10.1016/j.peptides.2004.02.007.
25. Owen B.M., Ding X., Morgan D.A., Coate K.C., Bookout A.L., Rahmouni K., Kliewer S.A., Mangelsdorf D.J. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014;20(4):670-677. https://doi.org/10.1016/j.cmet.2014.07.012.
26. Recinella L., Leone S., Ferrante C., Chiavaroli A., Di Nisio C., Martinotti S., Vacca M., Brunetti L., Orlando G. Effects of central fibroblast growth factor 21 (FGF21) in energy balance. J. Biol. Regul. Homeost. Agents. 2017;31(3):603-613.
27. Rossi J., Balthasar N., Olson D., Scott M., Berglund E., Lee C.E., Choi M.J., Lauzon D., Lowell B.B., Elmquist J.K. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 2011;13(2):195-204. https://doi.org/10.1016/j.cmet.2011.01.010.
28. Singh R.K., Kumar P., Mahalingam K. Molecular genetics of human obesity: A comprehensive review. C. R. Biol. 2017;340(2):87-108. https://doi.org/10.1016/j.crvi.2016.11.007.
29. Tao Y.-X. The melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. Endocr. Rev. 2010;31(4):506-543. https://doi.org/10.1210/er.2009-0037.
30. Wolff G.L., Roberts D.W., Mountjoy K.G. Physiological consequences of ectopic agouti gene expression: the yellow obese mouse syndrome. Physiol. Genomics. 1999;1(3):151-163. https://doi.org/10.1152/physiolgenomics.1999.1.3.151.
31. Xie T., Leung P.S. Fibroblast growth factor 21: a regulator of metabolic disease and health span. Am. J. Physiol. Endocrinol. Metab. 2017; 313(3):E292-E302. https://doi.org/10.1152/ajpendo.00101.2017.
32. Xu J., Lloyd D.J., Hale C., Stanislaus S., Chen M., Sivits G., Vonderfecht S., Hecht R., Li Y.-S., Lindberg R.A., Chen J.-L., Jung D.Y., Zhang Z., Ko H.-J., Kim J.K., Véniant M.M. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes. 2009;58(1):250-259. https://doi.org/10.2337/db08-0392.
33. Yang X., Schadt E.E., Wang S., Wang H., Arnold A.P., Ingram-Drake L., Drake T.A., Lusis A.J. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 2006;16(8):995-1004. https://doi.org/10.1101/gr.5217506.