Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Pharmacological effects of fibroblast growth factor 21 are sex-specific in mice with the lethal yellow (Ay) mutation

https://doi.org/10.18699/VJ20.40-o

Abstract

Hypothalamic melanocortin 4 receptors (MC4R) regulate energy balance. Mutations in the MC4R gene are the most common cause of monogenic obesity in humans. Fibroblast growth factor 21 (FGF21) is a promising antiobesity agent, but its effects on melanocortin obesity are unknown. Sex is an important biological variable that must be considered when conducting preclinical studies; however, in laboratory animal models, the pharmacological effects of FGF21 are well documented only for male mice. We aimed at investigating whether FGF21 affects metabolism in male and female mice with the lethal yellow (Ay ) mutation, which results in MC4R blockage and obesity development. Obese C57Bl-Ay male and female mice were administered subcutaneously for 10 days with vehicle or FGF21 (1 mg per 1 kg). Food intake (FI), body weight (BW), blood parameters, and gene expression in the liver, muscles, brown adipose tissue, subcutaneous and visceral white adipose tissues, and hypothalamus were measured. FGF21 action strongly depended on the sex of the animals. In the males, FGF21 decreased BW and insulin blood levels without affecting FI. In the females, FGF21 increased FI and liver weight, but did not affect BW. In control Ay -mice, expression of genes involved in lipid and glucose metabolism (Ppargc1a, Cpt1, Pck1, G6p, Slc2a2) in the liver and genes involved in lipogenesis (Pparg, Lpl, Slc2a4) in visceral adipose tissue was higher in females than in males, and FGF21 administration inhibited the expression of these genes in females. FGF21 administration decreased hypothalamic POMC mRNA only in males. Thus, the pharmacological effect of FGF21 were significantly different in male and female Ay -mice; unlike males, females were resistant to catabolic effects of FGF21.

About the Authors

E. N. Makarova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


T. V. Yakovleva
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


N. Yu. Balyibina
Novosibirsk State University
Russian Federation
Novosibirsk


K. O. Baranov
The Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


E. I. Denisova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


A. D. Dubinina
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


N. A. Feofanova
Research Institute of Fundamental and Clinical Immunology
Russian Federation
Novosibirsk


N. M. Bazhan
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation
Novosibirsk


References

1. Bazhan N., Jakovleva T., Balyibina N., Dubinina A., Denisova E., Feofanova N., Makarova E. Sex dimorphism in the Fgf21 gene expression in liver and adipose tissues is dependent on the metabolic condition. Online J. Biol. Sci. 2019;19(1):28-36. DOI 10.3844/ojbsci.2019.28.36.

2. Berglund E.D., Liu T., Kong X., Sohn J.-W., Vong L., Deng Z., Lee C.E., Lee S., Williams K.W., Olson D.P., Scherer P.E., Lowell B.B., Elmquist J.K. Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia. Nat. Neurosci. 2014;17(7):911-913. DOI 10.1038/nn.3737.

3. BonDurant L.D., Ameka M., Naber M.C., Markan K.R., Idiga S.O., Acevedo M.R., Walsh S.A., Ornitz D.M., Potthoff M.J. FGF21 regulates metabolism through adipose-dependent and -independent mechanisms. Cell Metab. 2017;25(4):935-944.e4. DOI 10.1016/j.cmet.2017.03.005.

4. BonDurant L.D., Potthoff M.J. Fibroblast growth factor 21: a versatile regulator of metabolic homeostasis. Annu. Rev. Nutr. 2018;38(1): 173-196. DOI 10.1146/annurev-nutr-071816-064800.

5. Bultman S.J., Michaud E.J., Woychik R.P. Molecular characterization of the mouse agouti locus. Cell. 1992;71(7):1195-1204.

6. Camporez J.P.G., Jornayvaz F.R., Petersen M.C., Pesta D., Guigni B.A., Serr J., Zhang D., Kahn M., Samuel V.T., Jurczak M.J., Shulman G.I. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology. 2013;154(9):3099-3109. DOI 10.1210/en.2013-1191.

7. Chukijrungroat N., Khamphaya T., Weerachayaphorn J., Songserm T., Saengsirisuwan V. Hepatic FGF21 mediates sex differences in highfat high-fructose diet-induced fatty liver. Am. J. Physiol. Endocrinol. Metab. 2017;313(2):E203-E212. DOI 10.1152/ajpendo.00076.2017.

8. Clayton J.A. Applying the new SABV (sex as a biological variable) policy to research and clinical care. Physiol. Behav. 2018;1872-1875. DOI 10.1016/j.physbeh.2017.08.012.

9. Coskun T., Bina H.A., Schneider M.A., Dunbar J.D., Hu C.C., Chen Y., Moller D.E., Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008;149(12):6018-6027. DOI 10.1210/en.2008-0816.

10. Della Torre S., Lolli F., Ciana P., Maggi A. Sexual dimorphism and estrogen action in mouse liver. Adv. Exp. Med. Biol. 2017;1043: 141-151.

11. Fani L., Bak S., Delhanty P., van Rossum E.F.C., van den Akker E.L.T. The melanocortin-4 receptor as target for obesity treatment: a systematic review of emerging pharmacological therapeutic options. Int. J. Obes. (Lond.) 2014;38(2):163-169. DOI 10.1038/ijo.2013.80.

12. Farooqi I.S., Keogh J.M., Yeo G.S.H., Lank E.J., Cheetham T., O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 2003;348(12):1085-1095. DOI 10.1056/NEJMoa022050.

13. Gasparin F.R.S., Carreño F.O., Mewes J.M., Gilglioni E.H., Pagadigorria C.L.S., Natali M.R.M., Utsunomiya K.S., Constantin R.P., Ouchida A.T., Curti C., Gaemers I.C., Elferink R.P.J.O., Constantin J., Ishii-Iwamoto E.L. Sex differences in the development of hepatic steatosis in cafeteria diet-induced obesity in young mice. Biochim. Biophys. Acta Mol. Basis Dis. 2018;1864(7):2495-2509. DOI 10.1016/j.bbadis.2018.04.004.

14. Girardet C., Butler A.A. Neural melanocortin receptors in obesity and related metabolic disorders. Biochim. Biophys. Acta. 2014;1842(3): 482-494. DOI 10.1016/j.bbadis.2013.05.004.

15. Grove K.L., Fried S.K., Greenberg A.S., Xiao X.Q., Clegg D.J. A microarray analysis of sexual dimorphism of adipose tissues in highfat-diet-induced obese mice. Int. J. Obes. (Lond.). 2010;34(6):989-1000. DOI 10.1038/ijo.2010.12.

16. Jackson V.M., Breen D.M., Fortin J.-P., Liou A., Kuzmiski J.B., Lomis A.K., Rives M.-L., Shah B., Carpino P.A. Latest approaches for the treatment of obesity. Expert Opin. Drug Discov. 2015;10(8): 825-839. DOI 10.1517/17460441.2015.1044966.

17. Kharitonenkov A., Shiyanova T.L., Koester A., Ford A.M., Micanovic R., Galbreath E.J., Sandusky G.E., Hammond L.J., Moyers J.S., Owens R.A., Gromada J., Brozinick J.T., Hawkins E.D., Wroblewski V.J., Li D.-S., Mehrbod F., Jaskunas S.R., ShanafeltA.B. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 2005;115(6): 1627-1835. DOI 10.1172/JCI23606.

18. Lan T., Morgan D.A., Rahmouni K., Sonoda J., Fu X., Burgess S.C., Holland W.L., Kliewer S.A., Mangelsdorf D.J. FGF19, FGF21, and an FGFR1/β-Klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab. 2017;26(5):709-718.e3. DOI 10.1016/j.cmet.2017.09.005.

19. Larson K.R., Chaffin A.T.-B., Goodson M.L., Fang Y., Ryan K.K. Fibroblast growth factor-21 controls dietary protein intake in male mice. Endocrinology. 2019;160(5):1069-1080. DOI 10.1210/en.2018-01056.

20. Lee Y.-H., Kim S.H., Kim S.-N., Kwon H.-J., Kim J.-D., Oh J.Y., Jung Y.-S. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease. Oncotarget. 2016;7(30):46959-46971. DOI 10.18632/oncotarget.10506.

21. Markan K.R., Naber M.C., Ameka M.K., Anderegg M.D., Mangelsdorf D.J., Kliewer S.A., Mohammadi M., Potthoff M.J. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes. 2014;63(12):4057-4063. DOI 10.2337/db14-0595.

22. Mauvais-Jarvis F., Arnold A.P., Reue K. A guide for the design of pre-clinical studies on sex differences in metabolism. Cell Metab. 2017;25(6):1216-1230. DOI 10.1016/j.cmet.2017.04.033.

23. Michaud E.J., Mynatt R.L., Miltenberger R.J., Klebig M.L., Wilkinson J.E., Zemel M.B., Wilkison W.O., Woychik R.P. Role of the agouti gene in obesity. J. Endocrinol. 1997;155(2):207-209.

24. Morton G.J., Mystkowski P., Matsumoto A.M., Schwartz M.W. Increased hypothalamic melanin concentrating hormone gene expression during energy restriction involves a melanocortin-independent, estrogen-sensitive mechanism. Peptides. 2004;25(4):667-674. DOI 10.1016/j.peptides.2004.02.007.

25. Owen B.M., Ding X., Morgan D.A., Coate K.C., Bookout A.L., Rahmouni K., Kliewer S.A., Mangelsdorf D.J. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014;20(4):670-677. DOI 10.1016/j.cmet.2014.07.012.

26. Recinella L., Leone S., Ferrante C., Chiavaroli A., Di Nisio C., Martinotti S., Vacca M., Brunetti L., Orlando G. Effects of central fibroblast growth factor 21 (FGF21) in energy balance. J. Biol. Regul. Homeost. Agents. 2017;31(3):603-613.

27. Rossi J., Balthasar N., Olson D., Scott M., Berglund E., Lee C.E., Choi M.J., Lauzon D., Lowell B.B., Elmquist J.K. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 2011;13(2):195-204. DOI 10.1016/j.cmet.2011.01.010.

28. Singh R.K., Kumar P., Mahalingam K. Molecular genetics of human obesity: A comprehensive review. C. R. Biol. 2017;340(2):87-108. DOI 10.1016/j.crvi.2016.11.007.

29. Tao Y.-X. The melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. Endocr. Rev. 2010;31(4):506-543. DOI 10.1210/er.2009-0037.

30. Wolff G.L., Roberts D.W., Mountjoy K.G. Physiological consequences of ectopic agouti gene expression: the yellow obese mouse syndrome. Physiol. Genomics. 1999;1(3):151-163. DOI 10.1152/physiolgenomics.1999.1.3.151.

31. Xie T., Leung P.S. Fibroblast growth factor 21: a regulator of metabolic disease and health span. Am. J. Physiol. Endocrinol. Metab. 2017; 313(3):E292-E302. DOI 10.1152/ajpendo.00101.2017.

32. Xu J., Lloyd D.J., Hale C., Stanislaus S., Chen M., Sivits G., Vonderfecht S., Hecht R., Li Y.-S., Lindberg R.A., Chen J.-L., Jung D.Y., Zhang Z., Ko H.-J., Kim J.K., Véniant M.M. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes. 2009;58(1):250-259. DOI 10.2337/db08-0392.

33. Yang X., Schadt E.E., Wang S., Wang H., Arnold A.P., Ingram-Drake L., Drake T.A., Lusis A.J. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 2006;16(8):995-1004. DOI 10.1101/gr.5217506.


Review

Views: 1171


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)