Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Constructing the constitutively active ribosomal protein S6 kinase 2 from Arabidopsis thaliana (AtRPS6K2) and testing its activity in vitro

https://doi.org/10.18699/VJ20.39-o

Abstract

Ribosomal protein S6 (RPS6) is the only phosphorylatable protein of the eukaryotic 40S ribosomal subunit. Ribosomes with phosphorylated RPS6 can selectively translate 5’TOP-(5’-terminal oligopyrimidine)-containing mRNAs that encode most proteins of the translation apparatus. The study of translational control of 5’TOP-mRNAs, which are preferentially translated when RPS6 is phosphorylated and cease to be translated when RPS6 is de-phosphorylated, is particularly important. In Arabidopsis thaliana, AtRPS6 is phosphorylated by kinase AtRPS6K2, which should in turn be phosphorylated by upper level kinases (AtPDK1 – at serine (S) 296, AtTOR – at threonine (T) 455 and S437) for full activation. We have cloned AtRPS6K2 cDNA gene and carried out in vitro mutagenesis replacing codons encoding S296, S437 and T455 by triplets of phosphomimetic glutamic acid (E). After the expression of both natural and mutated cDNAs in Escherichia coli cells, two recombinant proteins were isolated: native AtRPS6K2 and presumably constitutively active AtRPS6K2(S296E, S437E, T455E). The activity of these variants was tested in vitro. Both kinases could phosphorylate wheat (Triticum aestivum L.) TaRPS6 as part of 40S ribosomal subunits isolated from wheat embryos, though the non-mutated variant had less activity than phosphomimetic one. The ability of recombinant non-mutated kinase to phosphorylate TaRPS6 can be explained by its phosphorylation by bacterial kinases during the expression and isolation steps. The phosphomimetically mutated AtRPS6K2(S296E, S437E, T455E) can serve as a tool to investigate preferential translation of 5’TOP-mRNAs in wheat germ cell-free system, in which most of 40S ribosomal subunits have phosphorylated TaRPS6. Besides, such an approach has a biotechnological application in producing genetically modified plants with increased biomass and productivity through stimulation of cell growth and division.

About the Authors

A. V. Zhigailov
M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry
Kazakhstan
Almaty


G. E. Stanbekova
M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry
Kazakhstan
Almaty


D. K. Beisenov
M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry; Institute of Plant Biology and Biotechnology
Kazakhstan
Almaty


A. S. Nizkorodova
M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry
Kazakhstan
Almaty


N. S. Polimbetova
M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry
Kazakhstan
Almaty


B. K. Iskakov
M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry; Institute of Plant Biology and Biotechnology
Kazakhstan
Almaty


References

1. Bakshi A., Moin M., Madhav M.S., Kirti P.B. Target of rapamycin, a master regulator of multiple signalling pathways and a potential candidate gene for crop improvement. Plant Biol. (Stuttg.). 2019;21(2): 190-205. DOI 10.1111/plb.12935.

2. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem. 1976;7(72):248-254. DOI 10.1006/abio.1976.9999.

3. Caldana C., Martins M.C.M., Mubeen U., Urrea-Castellanos R. The magic ‘hammer’ of TOR: the multiple faces of a single pathway in the metabolic regulation of plant growth and development. J. Exp. Bot. 2019;70:2217-2225. DOI 10.1093/jxb/ery459.

4. Deprost D., Yao L., Sormani R., Moreau M., Leterreux G., Nicolai M., Bedu M., Robaglia Ch., Meyer Ch. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep. 2007;8(9):864-870. DOI 10.1038/sj.embor.7401043.

5. Enganti R., Cho S.K., Toperzer J.D., Urquidi-Camacho R.A., Cakir O.S., Ray A.P., Abraham P.E., Hettich R.L., von Arnim A.G. Phosphorylation of ribosomal protein RPS6 integrates light signals and circadian clock signals. Front. Plant Sci. 2017;8(2210). DOI 10.3389/fpls.2017.02210.

6. Henriques R., Bögre L., Horváth B., Magyar Z. Balancing act: matching growth with environment by the TOR signalling pathway. J. Exp. Bot. 2014;65(10):2691-2701. DOI 10.1093/jxb/eru04.

7. Immanuel T.M., Greenwood D.R., MacDiarmid R.M. A critical review of translation initiation factor eIF2α kinases in plants – regulating protein synthesis during stress. Funct. Plant Biol. 2012;39:717-735. DOI 10.1071/FP12116.

8. Kim Y.K., Kim S., Shin Y.J., Hur Y.S., Kim W.Y., Lee M.S., Cheon C.I., Verma D.P. Ribosomal protein S6, a target of rapamycin, is involved in the regulation of rRNA genes by possible epigenetic changes in Arabidopsis. J. Biol. Chem. 2014;289:3901-3912. DOI 10.1074/jbc.M113.515015.

9. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680-685. DOI 10.1038/227680a0.

10. Lee D.H., Park S.J., Ahn C.S., Pai H.S. MRF family genes are involved in translation control, especially under energy-deficient conditions, and their expression and functions are modulated by the TOR signaling pathway. Plant Cell. 2017;29:2895-2920. DOI 10.1105/tpc.17.00563.

11. Matasova N.B., Myltseva S.V., Zenkova M.A., Graifer D.M., Vladimirov S.N., Karpova G.G. Isolation of ribosomal subunits containing intact rRNA from human placenta. Estimation of functional activity of 80S ribosomes. Anal. Biochem. 1991;198:219-223. DOI 10.1016/0003-2697(91)90416-q.

12. Meyuhas O., Kahan T. The race to decipher the top secrets of TOP mRNAs. Biochim. Biophys. Acta. 2015;1849:801-811. DOI 10.1016/j.bbagrm.2014.08.015.

13. Otterhag L., Gustavsson N., Alsterfjord M., Pical C., Lehrach H., Gobom J., Sommarin M. Arabidopsis PDK1: identification of sites important for activity and downstream phosphorylation of S6 kinase. Biochimie. 2006;88:11-21. DOI 10.1016/j.biochi.2005.07.005.

14. Ren M., Qiu S., Venglat P., Xiang D., Feng L., Selvaraj G., Datla R. Target of rapamycin regulates development and ribosomal RNA expression through kinase domain in Arabidopsis. Plant Physiol. 2011; 155:1367-1382. DOI 10.1104/pp.110.169045.

15. Rexin D., Meyer C., Robaglia C., Veit B. TOR signalling in plants. Biochem. J. 2015;470:1-14. DOI 10.1042/BJ20150505.

16. Roustan V., Jain A., Teige M., Ebersberger I., Weckwerth W. An evolutionary perspective of AMPK-TOR signaling in the three domains of life. J. Exp. Bot. 2016;67(13):3897-3907. DOI 10.1093/jxb/erw211.JXB. 2016.

17. Ryabova L.A., Robaglia Ch., Meyer Ch. Target of rapamycin kinase: central regulatory hub for plant growth and metabolism. J. Exp. Bot. 2019;70(8):2211-2216. DOI 10.1093/jxb/erz108.

18. Schepetilnikov M., Dimitrova M., Mancera-Martínez E., Geldreich A., Keller M., Ryabova L.A. TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. EMBO J. 2013;32:1087-1102. DOI 10.1038/emboj.2013.61.

19. Shaikhin S.M., Smailov S.K., Lee A.V., Kozhanov E.V., Iskakov B.K. Interaction of wheat germ translation initiation factor 2 with GDP and GTP. Biochimie. 1992;74:447-454. DOI 10.1016/0300-9084(92)90085-s.

20. Shi L., Wu Y., Sheen J. TOR signaling in plants: conservation and innovation. Development. 2018;145(13). DOI 10.1242/dev.160887.

21. Song Y., Li L., Yang Zh., Zhao G., Zhang X., Wang L., Zheng L., Zhuo F., Yin H., Ge X., Zhang Ch., Yang Z., Ren M., Li F. Target of rapamycin (TOR) regulates the expression of IncRNAs in response to abiotic stresses in cotton. Front. Genet. 2019;9(690). DOI 10.3389/fgene.2018.00690.

22. Turck F., Kozma S.C., Thomas G., Nagy F. A heat-sensitive Arabidopsis thaliana kinase substitutes for human p70s6k function in vivo. Mol. Cel. Biol. 1998;18:2038-2044. DOI 10.1128/mcb.18.4.2038.

23. Turck F., Zilbermann F., Kozma S.C., Thomas G., Nagy F. Phytohormones participate in an S6 kinase signal transduction pathway in Arabidopsis. Plant Physiol. 2004;134:1527-1535. DOI 10.1104/pp.103.035873.

24. Werth E.G., McConnell E.W., Couso Lianez I., Perrine Z., Crespo J.L., Umen J.G., Hicks L.M. Investigating the effect of target of rapamycin kinase inhibition on the Chlamydomonas reinhardtii phosphoproteome: from known homologs to new targets. New Phytol. 2019; 221:247-260. DOI 10.1111/nph.15339.

25. Williams A.J., Werner-Fraczek J., Chang I.-F., Bailey-Serres J. Regulated phosphorylation of 40S ribosomal protein S6 in root tips of maize. Plant Physiol. 2003;132:2086-2097. DOI 10.1104/pp.103.022749.

26. Wolters H., Jürgens G. Survival of the flexible: hormonal growth control and adaptation in plant development. Nat. Rev. Genet. 2009;10: 305-317. DOI 10.1038/nrg2558.

27. Wu Y., Shi L., Li L., Fu L., Liu Y., Xiong Y., Sheen J. Integration of nutrient, energy, light, and hormone signalling via TOR in plants. J. Exp. Bot. 2019;70(8):2227-2238. DOI 10.1093/jxb/erz028.

28. Xiong Y., Sheen J. Novel links in the plant TOR kinase signaling network. Curr. Opin. Plant Biol. 2015;28:83-91. DOI 10.1016/j.pbi.2015.09.006.


Review

Views: 1314


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)