Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Редкий вариант мутации сайта сплайсинга гена, кодирующего глюкокиназу/гексокиназу 4, у пациента с moDY, подтип 2

https://doi.org/10.18699/VJ20.41-o

Аннотация

В статье рассмотрен вариант развития моногенной формы сахарного диабета (MODY), обусловленный редкой мутацией в гене GCK. Диабет MODY представляет собой сахарный диабет с аутосомно-доми-нантным типом наследования, возникающий в молодом возрасте и проявляющийся в дисфункции в-клеток поджелудочной железы. Этот тип отличается от классических типов сахарного диабета (СД1, СД2) клиническим течением, тактикой лечения и прогнозом для пациента. Клинические проявления MODY гетерогенны и могут различаться даже у представителей одной семьи, носителей одинаковых мутаций. Это обусловлено как сочетанием мутаций в различных генах у индивидуума, так и воздействием внешних факторов. Методом секвенирования нового поколения у пробанда была идентифицирована замена c.580 -1G>A (IVS5 -1G>A, rs1554335421), локализующаяся в акцепторном сайте сплайсинга пятого интрона гена GCK. Обнаруженный вариант сегрегировал с патологическим фенотипом у обследованных членов семьи. Ген GCK кодирует глюкокиназу (гексокиназу 4), которая катализирует первый шаг в различных путях метаболизма глюкозы. Мутации в этом гене ассоциированы с сахарным диабетом взрослого типа у молодых, подтип 2 (MODY2). Заболевание характеризуется незначительным повышением глюкозы натощак, хорошо контролируется медикаментами и отличается низкой распространенностью микро- и макрососудистых осложнений. Представленный в исследовании случай MODY2 выявил клиническую значимость мутации в сайте сплайсинга гена GCK. При возникновении у молодых людей и беременных женщин неклассического сахарного диабета проведение генетического тестирования необходимо для подтверждения диагноза и оптимального выбора тактики и способа лечения.

Об авторах

Д. Е. Иванощук
Научно-исследовательский институт терапии и профилактической медицины - филиал Федерального исследовательского центра Институт цитологии и генетики, Сибирское отделение Российской академии наук; Федеральный исследовательский центр Институт цитологии и генетики, Сибирское отделение Российской академии наук
Россия
Новосибирск



Е. В. Шахтшнейдер
Научно-исследовательский институт терапии и профилактической медицины - филиал Федерального исследовательского центра Институт цитологии и генетики, Сибирское отделение Российской академии наук; Федеральный исследовательский центр Институт цитологии и генетики, Сибирское отделение Российской академии наук
Россия
Новосибирск



А. К. Овсянникова
Научно-исследовательский институт терапии и профилактической медицины - филиал Федерального исследовательского центра Институт цитологии и генетики, Сибирское отделение Российской академии наук
Россия
Новосибирск



С. В. Михайлова
Федеральный исследовательский центр Институт цитологии и генетики, Сибирское отделение Российской академии наук
Россия
Новосибирск



О. Д. Рымар
Научно-исследовательский институт терапии и профилактической медицины - филиал Федерального исследовательского центра Институт цитологии и генетики, Сибирское отделение Российской академии наук
Россия
Новосибирск



В. И. Облаухова
Федеральный исследовательский центр Институт цитологии и генетики, Сибирское отделение Российской академии наук
Россия
Новосибирск



А. А. Юрченко
Федеральный исследовательский центр Институт цитологии и генетики, Сибирское отделение Российской академии наук
Россия
Новосибирск



М. И. Воевода
Научно-исследовательский институт терапии и профилактической медицины - филиал Федерального исследовательского центра Институт цитологии и генетики, Сибирское отделение Российской академии наук; Федеральный исследовательский центр Институт цитологии и генетики, Сибирское отделение Российской академии наук
Россия
Новосибирск


Список литературы

1. Abramowicz A., Gos M. Splicing mutations in human genetic disorders: examples, detection, and confirmation. J. Appl. Genet. 2018; 59:253-268. DOI 10.1007/s13353-018-0444-7.

2. Anık A., Çatlı G., Abacı A., Böber E. Maturity-onset diabetes of the young (MODY): an update. J. Pediatr. Endocrinol. Metab. 2015;28: 251-263. DOI 10.1515/jpem-2014-0384.

3. Bonnefond A., Philippe J., Durand E., Dechaume A., Huyvaert M., Montagne L., Marre M., Balkau B., Fajardy I., Vambergue A., Vatin V., Delplanque J., Le Guilcher D., De Graeve F., Lecoeur C., Sand O., Vaxillaire M., Froguel P. Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene. PLoS One. 2012;7(6):e37423. DOI 10.1371/journal.pone.0037423.

4. Caetano L.A., Jorge A.A., Malaquias A.C., Trarbach E.B., Queiroz M.S., Nery M., Teles M.G. Incidental mild hyperglycemia in children: two MODY 2 families identified in Brazilian subjects. Arq. Bras. Endocrinol. Metabol. 2012;56(8):519-24. http://dx.doi.org/10.1590/S0004-27302012000800010.

5. Chakera A.J., Carleton V.L., Ellard S., Wong J., Yue D.K., Pinner J., Hattersley A.T., Ross G.P. Antenatal diagnosis of fetal genotype determines if maternal hyperglycemia due to a glucokinase mutation requires treatment. Diabetes Care. 2012;35(9):1832-1834. DOI 10.2337/dc12-0151.

6. Chakera A.J., Spyer G., Vincent N., Ellard S., Hattersley A.T., Dunne F.P. The 0.1 % of the population with glucokinase monogenic diabetes can be recognized by clinical characteristics in pregnancy: the Atlantic Diabetes in Pregnancy cohort. Diabetes Care. 2014; 37(5):1230-1236. DOI 10.2337/dc13-2248.

7. Chakera A.J., Steele A.M., Gloyn A.L., Shepherd M.H., Shields B., Ellard S., Hattersley A.T. Recognition and management of individuals with hyperglycemia because of heterozygous glucokinase mutations. Diabetes Care. 2015;38(7):1383-1392. DOI 10.2337/dc14-2769.

8. Edghill E.L., Minton J.A., Groves C.J., Flanagan S.E., Patch A.M., Rubio-Cabezas O., Shepherd M., Lenzen S., McCarthy M.I., Ellard S., Hattersley A.T. Sequencing of candidate genes selected by beta cell experts in monogenic diabetes of unknown aetiology. J. Pancreas – JOP. 2010;11(1):14-17. http://dx.doi.org/10.6092/1590-8577/3864.

9. Esmaeilzadeh H., Bordbar M.R., Dastsooz H., Silawi M., Fard M.A.F., Adib A., Kafashan A., Tabatabaei Z., Sadeghipour F., Faghihi M.A. A novel splice site mutation in WAS gene in patient with Wiskott-Aldrich syndrome and chronic colitis: a case report. BMC Med. Genet. 2018;19(1):123. DOI 10.1186/s12881-018-0647-0.

10. Fajans S.S., Bell G.I., Polonsky K.S. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N. Engl. J. Med. 2001;345(13):971-980. DOI 10.1056/NEJMra002168.

11. Igudin E.L., Spirin P.V., Prassolov V.S., Rubtsov P.M., Zubkova N.A., Tyul’pakov A.N., Petryaikina E.E. Functional characterization of two novel splicing mutations of glucokinase gene associated with maturity-onset diabetes of the young type 2 (MODY2). Mol. Biol. 2014;48(2):248-253. DOI 10.1134/S0026893314020071.

12. Inoue M., Sakuraba Y., Motegi H., Kubota N., Toki H., Matsui J., Toyoda Y., Miwa I., Terauchi Y., Kadowaki T., Shigeyama Y., Kasuga M., Adachi T., Fujimoto N., Matsumoto R., Tsuchihashi K., Kagami T., Inoue A., Kaneda H., Ishijima J., Masuya H., Suzuki T., Wakana S., Gondo Y., Minowa O., Shiroishi T., Noda T. A series of maturity onset diabetes of the young, type 2 (MODY2) mouse models generated by a large-scale ENU mutagenesis program. Hum. Mol. Genet. 2004;13(11):1147-1157. DOI 10.1093/hmg/ddh133.

13. Iynedjian P.B. Molecular physiology of mammalian glucokinase. Cell. Mol. Life Sci. 2009;66(1):27-42. DOI 10.1007/s00018-008-8322-9.

14. Jang M.A., Kim Y.E., Kim S.K., Lee M.K., Kim J.W., Ki C.S. Identification and characterization of NF1 splicing mutations in Korean patients with neurofibromatosis type 1. J. Hum. Genet. 2016;61: 705-709. DOI 10.1038/jhg.2016.33.

15. Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alföldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P., Gauthier L.D., Brand H., Solomonson M., Watts N.A., Rhodes D., Singer-Berk M., England E.M., Seaby E.G., Kosmicki J.A., Walters R.K., Tashman K., Farjoun Y., Banks E., Poterba T., Wang A., Seed C., Whiffin N., Chong J.X., Samocha K.E., Pierce-Hoffman E., Zappala Z., O’Donnell-Luria A.H., Minikel E.V., Weisburd B., Lek M., Ware J.S., Vittal C., Armean I.M., Bergelson L., Cibulskis K., Connolly K.M., Covarrubias M., Donnelly S., Ferriera S., Gabriel S., Gentry J., Gupta N., Jeandet T., Kaplan D., Llanwarne C., Munshi R., Novod S., Petrillo N., Roazen D., Ruano-Rubio V., Saltzman A., Schleicher M., Soto J., Tibbetts K., Tolonen C., Wade G., Talkowski M.E.; The Genome Aggregation Database Consortium, Neale B.M., Daly M.J., MacArthur D.G. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv. 2019;531210. https://doi.org/10.1101/531210.

16. Lachance C.H. Practical aspects of monogenic diabetes: A clinical point of view. Can. J. Diabetes. 2016;40(5):368-375. DOI 10.1016/j.jcjd.2015.11.004.

17. Landrum M.J., Lee J.M., Benson M., Brown G.R., Chao C., Chitipiralla S., Gu B., Hart J., Hoffman D., Jang W., Karapetyan K., Katz K., Liu C., Maddipatla Z., Malheiro A., McDaniel K., Ovetsky M., Riley G., Zhou G., Holmes J.B., Kattman B.L., Maglott D.R. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062-D1067. DOI 10.1093/nar/gkx1153.

18. Li H., Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754-1760. DOI 10.1093/bioinformatics/btp324.

19. Lorini R., Klersy C., d’Annunzio G., Massa O., Minuto N., Iafusco D., Bellannè-Chantelot C., Frongia A.P., Toni S., Meschi F., Cerutti F., Barbetti F.; Italian Society of Pediatric Endocrinology and Diabetology (ISPED) Study Group. Maturity-onset diabetes of the young in children with incidental hyperglycemia : amulticenter Italian study of 172 families. Diabetes Care. 2009;32(10):1864-1866. DOI 10.2337/dc08-2018.

20. Ma S.L., Vega-Warner V., Gillies C., Sampson M.G., Kher V., Sethi S.K., Otto E.A. Whole exome sequencing reveals novel PHEX splice site mutations in patients with Hypophosphatemic rickets. PLoS One. 2015;10(6):e0130729. DOI 10.1371/journal.pone.0130729.

21. Matschinsky F., Liang Y., Kesavan P., Wang L., Froguel P., Velho G., Cohen D., Permutt M.A., Tanizawa Y., Jetton T.L. Glucokinase as pancreatic cell glucose sensor and diabetes gene. J. Clin. Invest. 1993;92(5):2092-2098. DOI 10.1172/JCI116809.

22. McDonald T.J., Ellard S. Maturity onset diabetes of the young: Identification and diagnosis. Ann. Clin. Biochem. 2013;50:403-415. DOI 10.1177/0004563213483458.

23. McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., DePristo M.A. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297-1303. DOI 10.1101/gr.107524.110.

24. Osbak K.K., Colclough K., Saint-Martin C., Beer N.L., Bellanné-Chantelot C., Ellard S., Gloyn A.L. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum. Mutat. 2009;30:1512-1526. DOI 10.1002/humu.21110.

25. Ovsyannikova A.K., Rymar O.D., Shakhtshneider E.V., Klimontov V.V., Koroleva E.A., Myakina N.E., Voevoda M.I. ABCC8-related maturity-onset diabetes of the young (MODY12): clinical features and treatment perspective. Diabetes Ther. 2016;7(3):591-600. DOI 10.1007/s13300-016-0192-9.

26. Plengvidhya N., Boonyasrisawat W., Chongjaroen N., Jungtrakoon P., Sriussadaporn S., Vannaseang S., Banchuin N., Yenchitsomanus P.T. Mutations of maturity-onset diabetes of the young (MODY) genes in Thais with early-onset type 2 diabetes mellitus. Clin. Endocrinol. (Oxf.). 2009;70(6):847-853. DOI 10.1111/j.1365-2265.2008.03397.x.

27. Pruhova S., Dusatkova P., Kraml P.J., Kulich M., Prochazkova Z., Broz J., Zikmund J., Cinek O., Andel M., Pedersen O., Hansen T., Leb J. Chronic mild hyperglycemia in GCK-MODY patients does not increase carotid intima-media thickness. Int. J. Endocrinol. 2013;2013:718254. DOI 10.1155/2013/718254.

28. Sambrook J., Russell D.W. Purification of nucleic acids by extraction with phenol:chloroform. Cold Spring Harbor Protoc. 2006;2006(1): 4455. DOI 10.1101/pdb.prot4455.

29. Shakhtshneider E.V., Ivanoshchuk D.Е., Makarenkova К.V., Orlov P.S., Timoshchenko О.V., Bazhan S.S., Nikitin Yu.P., Voevoda М.I. Cascade genetic screening in diagnostics of heterozygous familial hypercholesterolemia: clinical case. Russ. J. Cardiol. 2017;6(1460): 178-179. http://dx.doi.org/10.15829/1560-4071-2017-6-178-179. (in Russian)

30. Shields B.M., Hicks S., Shepherd M.H., Colclough K., Hattersley A.T., Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010;53(12):2504-2508. DOI 10.1007/s00125-010-1799-4.

31. Slaugenhaupt S.A., Blumenfeld A., Gill S.P., Leyne M., Mull J., Cuajungco M.P., Liebert C.B., Chadwick B., Idelson M., Reznik L., Robbins C., Makalowska I., Brownstein M., Krappmann D., Scheidereit C., Maayan C., Axelrod F.B., Gusella J.F. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am. J. Hum. Genet. 2001;68(3):598-605. DOI 10.1086/318810.

32. Spyer G., Macleod K.M., Shepherd M., Ellard S., Hattersley A.T. Pregnancy outcome in patients with raised blood glucose due to a heterozygous glucokinase gene mutation. Diabet. Med. 2009;26(1):14-18. DOI 10.1111/j.1464-5491.2008.02622.x.

33. Steele A.M., Shields B.M., Wensley K.J., Colclough K., Ellard S., Hattersley A.T. Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. JAMA. 2014;311(3):279-286. DOI 10.1001/jama.2013.283980.

34. Stenson P.D., Mort M., Ball E.V., Evans K., Hayden M., Heywood S., Hussain M., Phillips A.D., Cooper D.N. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum. Genet. 2017;136(6):665-677. DOI 10.1007/s00439-017-1779-6.

35. Stride A., Vaxillaire M., Tuomi T., Barbetti F., Njølstad P.R., Hansen T., Costa A., Conget I., Pedersen O., Søvik O., Lorini R., Groop L., Froguel P., Hattersley A.T. The genetic abnormality in the beta cell determines the response to an oral glucose load. Diabetologia. 2002; 45(3):427-435. DOI 10.1007/s00125-001-0770-9.

36. Thanabalasingham G., Owen K.R. Diagnosis and management of maturity onset diabetes of the young (MODY). BMJ. 2011;343:d6044. DOI 10.1136/bmj.d6044.

37. The 1000 Genomes Project Consortium, Auton A., Brooks L.D., Durbin R.M., Garrison E.P., Kang H.M., Korbel J.O., Marchini J.L., McCarthy S., McVean G.A., Abecasis G.R.A global reference for human genetic variation. Nature. 2015;526(7571):68-74. DOI 10.1038/nature15393.

38. Toaima D., Näke A., Wendenburg J., Praedicow K., Rohayem J., Engel K., Galler A., Gahr M., Lee-Kirsch M.A. Identification of novel GCK and HNF1A/TCF1 mutations and polymorphisms in German families with maturity-onset diabetes of the young (MODY). Hum. Mutat. 2005;25(5):503-504. DOI 10.1002/humu.9334.

39. Wang K., Li M., Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. DOI 10.1093/nar/gkq603.

40. Wędrychowicz A., Tobór E., Wilk M., Ziółkowska-Ledwith E., Rams A., Wzorek K., Sabal B., Stelmach M., Starzyk J.B. Phenotype Heterogeneity in glucokinase-maturity-onset diabetes of the young (GCK-MODY) patients. J. Clin. Res. Pediatr. Endocrinol. 2017; 9(3):246-252. DOI 10.4274/jcrpe.4461.

41. Xiong H.Y., Alipanahi B., Lee L.J., Bretschneider H., Merico D., Yuen R.K., Hua Y., Gueroussov S., Najafabadi H.S., Hughes T.R., Morris Q., Barash Y., Krainer A.R., Jojic N., Scherer S.W., Blencowe B.J., Frey B.J. The human splicing code reveals new insights into the genetic determinants of disease. Science. 2015;347(6218): 1254806. DOI 10.1126/science.1254806.


Рецензия

Просмотров: 943


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)