Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Factors affecting DH plants in vitro production from microspores of European radish

https://doi.org/10.18699/VJ20.592

Abstract

Over the recent years the market demand for scaling up the production of European radish (Raphanus sativus L.) varieties and hybrids for open and protected production, varying in ripeness group, root shape and color, has drastically increased. Therefore, the expansion of genetic diversity and acceleration of the selection process are important. Doubled haploid technology considerably curtails the time required for creation of homozygous constant parental cell lines when in vitro microspore culture is used as the most promising method. For the first time, we were able to realize the full production cycle of DH plants of European radish by in vitro microspore culture up to inclusion of the produced material into the selection process. We have selected: preferable flower bud size, heat shock parameters, induction and regeneration media. It was revealed that linear length on the flower buds with the best possible stage of microspore development is genotype-specific: the flower bud length 2.8-3.3 mm is optimal for accessions of Rhodes and 3.7-4.2 mm is optimal for accessions of Teplichny Gribovsky. Heat shock at 32 °C for 48 hours is the most suitable for most genotypes. For the first time Murashige and Skoog based culture medium has been used for embryogenesis induction, and a major dependence of embryogenesis induction on the genotype x medium interaction was found. At regeneration and tiller stage it is advisable to add 1 mg/mL of benzylaminopurine and 0.1 mg/L of gibberellic acid to the medium, and rotting of micro-sprouts is performed with the use of hormone-free medium. Analysis of the produced regenerant plants by chromosome count and cell nucleus flow cytometry showed that 69 % of plants have a diploid chromosome set, 9 % have a haploid chromosome set, and 22 % have mixoploids and aneu-ploids chromosome sets. The seed progeny from doubled haploids and mixoploids were obtained by self-pollination, where all R1 plants had a doubled set of chromosomes. This study launches the development of an efficient method of radish doubled haploid production to be used in the selection process.

About the Authors

E. V. Kozar
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center
Russian Federation

VNIISSOK, Odintsovo region, Moscow oblast



E. A. Domblides
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center
Russian Federation

VNIISSOK, Odintsovo region, Moscow oblast



A. V. Soldatenko
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center
Russian Federation

VNIISSOK, Odintsovo region, Moscow oblast



References

1. Alexander M.P. Differential staining of aborted and nonaborted pollen. Stain Technol. 1969;44(3):117-122. DOI 10.3109/10520296909063335.

2. Asif M. Progress and Opportunities of Doubled Haploid Production. Springer, 2013. DOI 10.1007/978-3-319-00732-8_1.

3. Bhatia R., Dey S.S., Parkash C., Sharma K., Sood S., Kumar R. Modification of important factors for efficient microspore em-bryogenesis and doubled haploid production in field grown white cabbage (Brassica oleracea var. capitata L.) genotypes in India. Sci. Hortic. (Amsterdam). 2018;233:178-187. DOI 10.1016/j.scienta.2018.01.017.

4. Bunin M.S., Shmykova N.A. The Use of Biotechnological Methods to Obtain the Source Material of Cabbage. Moscow: Rosinformagrotekh Publ., 2004. (in Russian)

5. Cao M.Q., Charlot F., Dore C. Embryogenesis and plant regeneration of sauerkraut cabbage (Brassica oleracea L. ssp. capitata) via in vitro isolated microspore culture. C.R. Acad. Sci. Paris. 1990;310:203-209.

6. Chun C., Park H., Na H. Microspore-derived embryo formation in radish (Raphanus sativus L.) according to nutritional and environmental conditions. Hort. Environ. Biotechnol. 2011;52(5):530-535. DOI 10.1007/s13580-011-0080-1.

7. Domblides E.A., Shmykova N.A., Shumilina N.A., Zayachkov-skaya T.V, Mineykina A.I., Kozar E.V, Ahramenko VA., Shevchenko L.L., Kan L.Ju., Bondareva L.L., Domblides A.S. A technology for obtaining doubled haploids in microspore cultures of the Brassicaceae family (guidelines). Moscow: VNIISSOK Publ., 2016. (in Russian)

8. Domblides E.A., Shmykova N.A., Shumilina D.V, Zayachkov-skaya T.V, Vjurtts T.S., Kozar E.V, Kan L.Yu., Romanov VS., Domblides A.S., Pivovarov VF., Soldatenko A.V Biotechnological approaches for breeding programs in vegetable crops. In: VIII Int. Sci. Agric. Symp. “Agrosym 2017”, Jahorina, Bosnia and Herzegovina, Oct. 2017: Book of Proceedings. 2017; 452-460.

9. Duijs J.G., Voorrips R.E., Visser D.L., Custers J.B.M. Microspore culture is successful in most crop types of Brassica oleracea L. Euphytica. 1992;60:45-55. DOI 10.1007/BF00022257.

10. Dunwell J.M. Haploids in flowering plants: origins and exploitation. Plant Biotechnol. J. 2010;8:377-424. DOI 10.1111/j.1467-7652.2009.00498.x.

11. Ferrie A.M.R., Caswell K.L. Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tissue Organ Cult. 2011;104:301-309. DOI 10.1007/s11240-010-9800-y.

12. Ferrie A.M.R., Mollers C. Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tissue Organ Cult. 2011;104:375-386. DOI 10.1007/s11240-010-9831-4.

13. Forster B.P., Thomas W.T.B. Doubled haploids in genetics and plant breeding. In: Janick J. (Ed.). Plant Breeding Reviews. Vol. 25. John Wiley & Sons, 2005;57-88.

14. Han N., Kim S.U., Park H.Y., Na H. Microspore-derived embryo formation and morphological changes during the isolated microspore culture of radish (Raphanus sativus L.). Kor. J. Hort. Sci. Technol. 2014;32(3):382-389. DOI 10.7235/hort.2014.13170.

15. Han N., Na H., Kim J. Identification and variation of major aliphatic glucosinolates in doubled haploid lines of radish (Raphanus sativus L.). Kor. J. Hort. Sci. Technol. 2018;36(2):302-311. DOI 10.12972/kjhst.20180030.

16. Ignatova S.A. Cell Technologies in Crop Production, Genetics and Breeding of Cultivated Plants: Tasks, Opportunities, and Development of in vitro Systems. Odessa: Astroprint Publ., 2011. (in Russian)

17. Lichter R. Induction of haploid plants from isolated pollen of Brassica napus. Z. Pflanzenphysiol. 1982;105:427-434. DOI 10.1016/S0044-328X(82)80040-8.

18. Lichter R. Efficient yield of embryoids by culture of isolated microspores of different Brassicaceae species. Plant Breed. 1989;103(2):119-123. DOI 10.1111/j.1439-0523.1989.tb00359.x.

19. Maluszynski M., Kasha K.J., Forster B.P., Szarejko I. (Eds.). Doubled Haploid Production in Crop Plants: A Manual. Springer Science+Business Media, 2003. DOI 10.1007/978-94-017-1293-4.

20. Masuda K., Kikuta Y., Okazawa Y.A. Revision of the medium for somatic embryogenesis in carrot suspension culture. J. Fac. Agric., Hokkaido Univ., Jpn. 1981;60(3):183-193.

21. Murashige T., Skoog F. A revised medium for rapid growth and big assays with tobacco tissue cultures. Physiol. Plant. 1962;15:473-497. DOI 10.1111/j.1399-3054.1962.tb08052.x.

22. Pechan P.M., Keller W.A. Identification of potentially embryo-genic microspores in Brassica napus. Physiol. Plant. 1988; 74(2):377-384. DOI 10.1111/j.1399-3054.1988.tb00646.x.

23. Pivovarov VF., Bondareva L.L., Shmykova N.A., Shumilina D.V, Mineikina A.I. New generation hybrids of white cabbage (Brassica oleracea L. convar. capitata var. alba DC) based on doubled haploids. Selskokhozyaystvennaya Biolo-giya = Agricultural Biology. 2017;52:143-151. DOI 10.15389/agrobiology.2017.1.143eng.

24. Shmykova N.A., Shumilina D.V, Bondareva L.L., Zablot-skaya E.A. Improvement of DH-technology of development of double haploid plants of broccoli. Selektsiya i Semenovod-stvo Ovoshchnykh Kul’tur = Selection and Seed Farming of Vegetable Crops. 2015;46:601-608. (in Russian)

25. Shumilina D.V, Shmykova N.A., Bondareva L.L., Suprunova T.P. Effect of genotype and medium culture content on microspore-derived embryo formation in Chinese cabbage (Brassica rapa ssp. chinensis) cv. Lastochka. Biology Bulletin. 2015;42:302-309. DOI 10.1134/S1062359015040135.

26. Takahata Y, Keller W.A. High frequency embryogenesis and plant regeneration in isolated microspore culture of Brassica oleracea L. Plant Sci. 1991;74:235-242. DOI 10.1016/0168-9452(91)90051-9.

27. Takahata Y., Komatsu H., Kaizuma N. Microspore culture of radish (Raphanus sativus L.): influence of genotype and culture conditions on embryogenesis. Plant Cell Rep. 1996; 16(3-4):163-166. DOI 10.1007/BF01890859.

28. Tuncer B. Callus formation from isolated microspore culture in radish (Raphanus sativus L.). J. Anim. Plant Sci. 2017;27(1):277-282.

29. Vjurtts T.S., Domblides E.A., Shmykova N.A., Fedorova M.I., Kan L. Ju., Domblides A.S. Production of DH-plants in culture of isolated microspore in carrot. Ovoshchi Rossii = Vegetables of Russia. 2017;5(38):25-30. DOI 10.18619/2072-9146-2017-5-25-30. (in Russian)

30. Winarto B., Teixeira da Silva J.A. Microspore culture protocol for Indonesian Brassica oleracea. Plant Cell Tissue Organ Cult. 2011;107: 305-315. DOI 10.1007/s11240-011-9981-z.

31. Yuan S.X., Su YB., Liu Y.V, Fang Z.Y., Yang L.M., Zhuang M., Zhang YY., Sun PT. Effects of pH, MES, arabinogalactan-proteins on microspore cultures in white cabbage. Plant Cell Tissue Organ Cult. 2012;110:69-76. DOI 10.1007/s11240-012-0131-z.

32. Zhang W., Qiang F., Xigang D., Manzhu B. The culture of isolated microspores of ornamental kale (Brassica oleracea var. ace-phala) and the importance of genotype to embryo regeneration. Sci. Hortic. (Amsterdam). 2008;117:69-72. DOI 10.1016/j.scienta.2008.03.023.


Review

Views: 1365


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)