Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Characterization of the complete genome sequence of the recombinant norovirus GII.P16/GII.4_Sydney_2012 revealed in Russia

https://doi.org/10.18699/VJ20.597

Abstract

Noroviruses (the Caliciviridae family) are a common cause of acute gastroenteritis in all age groups. These small non-envelope viruses with a single-stranded (+)RNA genome are characterized by high genetic variability. Continuous changes in the genetic diversity of co-circulating noroviruses and the emergence of new recombinant variants are observed worldwide. Recently, new recombinant noroviruses with a novel GII.P16 polymerase associated with different capsid proteins VP1 were reported. As a part of the surveillance study of sporadic cases of acute gastroenteritis in Novosibirsk, a total of 46 clinical samples from children with diarrhea were screened in 2016. Norovirus was detected in six samples from hospitalized children by RT-PCR. The identified noroviruses were classified as recombinant variants GII.P21/GII.3, GII.Pe/GII.4_Sydney_2012, and GII.P16/GII.4_Sydney_2012 by sequencing of the ORF1/ORF2 junction. In Novosibirsk, the first appearance of the new recombinant genotype GII.P16/GII.4_Sydney_2012 was recorded in spring 2016. Before this study, only four complete genome sequences of the Russian GII.P16/GII.3 norovirus strains were available in the GenBank database. In this work, the complete genome sequence of the Russian strain Hu/GII.P16-GII.4/RUS/Novosibirsk/NS16-C38/2016 (GenBank KY210980) was determined. A comparison of the nucleotide and the deduced amino acid sequences showed a high homology of the Russian strain with GII.P16/GII.4_Sydney_2012 strains from other parts of the world. A comparative analysis showed that several unique substitutions occurred in the GII.P16 polymerase, N-terminal p48 protein, and minor capsid protein VP2 genes, while no unique changes in the capsid VP1 gene were observed. A functional significance of these changes suggests that a wide distribution of the strains with the novel GII.P16 polymerase may be associated both with several amino acid substitutions in the polymerase active center and with the insertion of glutamic acid or glycine in an N-terminal p48 protein that blocks the secretory immunity of intestinal epithelial cells. Further monitoring of genotypes will allow determining the distribution of norovirus recombinants with the polymerase GII.P16 in Russia.

About the Authors

E. V. Zhirakovskaia
Institute of diemical Biology аnd Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. Y. Tikunov
Institute of diemical Biology аnd Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Russian Federation


S. N. Sokolov
Institute of diemical Biology аnd Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences; State Research Center of Virology and Biotechnology Vector
Russian Federation
Koltsovo, Novosibirsk region


B. I. Kravchuk
Institute of diemical Biology аnd Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Russian Federation


E. I. Krasnova
Novosibirsk State Medical University, Department of Infectious Diseases
Russian Federation


N. V. Tikunova
Institute of diemical Biology аnd Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Russian Federation


References

1. Ahmed S.M., Hall A.J., Robinson A.E., Verhoef L., Premkumar P., Parashar U.D., Koopmans M., Lopman B.A. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect. Dis. 2014;14(8):725-730. DOI 10.1016/S1473-3099(14)70767-4.

2. Barreira D.M.P.G., Fumian T.M., Tonini M.A.L., Volpini L.P.B., Santos R.P., Ribeiro A.L.C., Leite J.P.G., Souza M.T.B.M., Brasil P., da Cunha D.C., Miagostovich M.P., Spano L.C. Detection and molecular characterization of the novel recombinant norovirus GILP16-GIL4 Sydney in southeastern Brazil in 2016. PLoS One. 2017;12(12):e0189504. DOI 10.1371/journal.pone.0189504.

3. Bartsch S.M., Lopman B.A., Ozawa S., Hall A.J., Lee B.Y Global economic burden of norovirus gastroenteritis. PLoS One. 2016; 11(4):e0151219. DOI 10.1371/journal.pone.0151219.

4. Bidalot M., Thery L., Kaplon J., de Rougemont A., Ambert-Balay K. Emergence of new recombinant noroviruses GII.p16-GII.4 and GII.p16-GII.2, France, winter 2016 to 2017. Euro Surveill. 2017;22(15):pii=30508. DOI 10.2807/1560-7917.ES.2017.22.15.30508.

5. Brown J.R., Roy S., Shah D., Williams C.A., Williams R., Dunn H., Hartley J., Harris K., Breuer J. Norovirus transmission dynamics in a pediatric hospital using full genome sequences. Clin. Infect. Dis. 2019;68(2):222-228. DOI 10.1093/cid/ciy438.

6. Brown J.R., Roy S., Tutill H., Williams R., Breuer J. Super-infections and relapses occur in chronic norovirus infections. J. Clin. Virol. 2017;96:44-48. DOI 10.1016/j.jcv.2017.09.009.

7. Bull R.A., White P.A. Mechanisms of GII.4 norovirus evolution. Trends Microbiol. 2011;19:233-240. DOI 10.1016/j.tim.2011.01.002.

8. Cannon J.L., Barclay L., Collins N.R., Wikswo M.E., Castro C.J., Magana L.C., Gregoricus N., Marine R.L., Chhabra P., Vin-je J. Genetic and epidemiologic trends of norovirus outbreaks in the United States from 2013 to 2016 demonstrated emergence of novel GII.4 recombinant viruses. J. Clin. Microbiol. 2017;55(7):2208-2221. DOI 10.1128/JCM.00455-17.

9. Choi Y.S., Koo E.S., Kim M.S., Choi J.D., Shin Y, Jeong Y.S. Reemergence of a GII.4 norovirus Sydney 2012 variant equipped with GII.P16 RdRp and its predominance over novel variants of GII.17 in South Korea in 2016. Food Environ. Virol. 2017;9(2): 168-178. DOI 10.1007/s12560-017-9278-4.

10. Cotten M., Petrova V, Phan M.V., Rabaa M.A., Watson S.J., Ong S.H., Kellam P., Baker S. Deep sequencing of norovirus genomes defines evolutionary patterns in an urban tropical setting. J. Virol. 2014;88(19):11056-11069. DOI 10.1128/JVI.01333-14.

11. de Graaf M., van Beek J., Vennema H., Podkolzin A.T., Hewitt J., Bucardo F., Templeton K., Mans J., Nordgren J., Reuter G., Lynch M., Rasmussen L.D., Iritani N., Chan M.C., Mar-tella V., Ambert-Balay K., Vinje J., White P.A., Koopmans M.P. Emergence of a novel GII.17 norovirus - end of the GII.4 era? Euro Surveill. 2015;20(26):pii=21178. DOI 10.2807/1560-7917.ES2015.20.26.21178.

12. Eden J.S., Tanaka M.M., Boni M.F., Rawlinson W.D., White P.A. Recombination within the pandemic norovirus GII.4 lineage. J. Virol. 2013;87(11):6270-6282. DOI 10.1128/JVI.03464-12.

13. Fernandez-Vega V, Sosnovtsev S.V., Belliot G., King A.D., Mitra T., Gorbalenya A., Green K.Y Norwalk virus N-terminal nonstructural protein is associated with disassembly of the Golgi complex in transfected cells. J. Virol. 2004;78(9):4827-4837. DOI 10.1128/JVI.78.9.4827-4837.2004.

14. Green K.Y Caliciviridae: The Noroviruses. In: Knipe D.M., How-ley P.M., Griffin D.E., Lamb R.A., Martin M.A., Racaniel-lo VR., Roizman B. (Eds.). Fields Virology. 6th edn. Lippincott Williams & Wilkins, Philadelphia, 2013;582-608.

15. Han J., Wu X., Chen L., Fu Y., Xu D., Zhang P., Ji L. Emergence of norovirus GII.P16-GII.2 strains in patients with acute gastroenteritis in Huzhou, China, 2016-2017. BMC Infect. Dis. 2018;18(1):342. DOI 10.1186/s12879-018-3259-6.

16. Hata M., Nakamura N., Kobayashi S., OnouchiA., Saito T., Hirose E., Adachi H., Saito N., Ito M., Yasui Y, Matsumoto M., Minagawa H. Emergence of new recombinant noroviruses GII.P16-GII.2 and GII.P16-GII.4 in Aichi, Japan, during the 2016/17 season. Jpn. J. Infect. Dis. 2018;71(4):319-322. DOI 10.7883/yoken.JJID.2017.520.

17. Hoa-Tran T.N., Nakagomi T., Sano D., Sherchand J.B., Pan-dey B.D., Cunliffe N.A., Nakagomi O. Molecular epidemiology of noroviruses detected in Nepalese children with acute diarrhea between 2005 and 2011: increase and predominance of minor genotype GII.13. Infect. Genet. Evol. 2015;30:27-36. DOI 10.1016/j.meegid.2014.12.003.

18. Hoa Tran T.N., Trainor E., Nakagomi T., Cunliffe N.A., Nakago-mi O. Molecular epidemiology of noroviruses associated with acute sporadic gastroenteritis in children: global distribution of genogroups, genotypes and GII.4 variants. J. Clin. Virol. 2013;56(3):269-277. DOI 10.1016/j.jcv.2012.11.011.

19. Iritani N., Kaida A., Abe N., Sekiguchi J., Kubo H., Takakura K., Goto K., Ogura H., Seto Y Increase of GII.2 norovirus infections during the 2009-2010 season in Osaka City, Japan. J. Med. Virol. 2012;84(3):517-525. DOI 10.1002/jmv.23211.

20. Kirby A.E., Teunis P.F., Moe C.L. Two human challenge studies confirm high infectivity of Norwalk virus. J. Infect. Dis. 2015;211(1):166-167. DOI 10.1093/infdis/jiu385.

21. Kroneman A., Vega E., Vennema H., Vinje J., White P.A., Hans-man G., Green K., Martella V, Katayama K., Koopmans M. Proposal for a unified norovirus nomenclature and genotyping. Arch. Virol. 2013;158:2059-2068. DOI 10.1007/s00705-013-1708-5.

22. Lin Y, Fengling L., Lianzhu W., Yuxiu Z., Yanhua J. Function of VP2 protein in the stability of the secondary structure of virus-like particles of genogroup II norovirus at different pH levels: function of VP2 protein in the stability of NoV VLPs. J. Microbiol. 2014;52(11):970-975. DOI 10.1007/s12275-014-4323-6.

23. Lun J.H., Hewitt J., Yan G.J.H., Enosi T.D., Rawlinson W.D., White P.A. Recombinant GII.P16/GII.4 Sydney 2012 was the dominant norovirus identified in Australia and New Zealand in 2017. Viruses. 2018;10(10):548. DOI 10.3390/v10100548.

24. Mallory M.L., Lindesmith L.C., Graham R.L., Baric R.S. GII.4 human norovirus: surveying the antigenic landscape. Viruses. 2019;11(2):177. DOI 10.3390/v11020177.

25. Motomura K., Boonchan M., Noda M., Tanaka T., Takeda N. Norovirus epidemics caused by new GII.2 chimera viruses in 2012-2014 in Japan. Infect. Genet. Evol. 2016;42:49-52. DOI 10.1016/j.meegid.2016.04.026.

26. Ozaki K., Matsushima Y, Nagasawa K., Motoya T., Ryo A., Kuro-da M., Katayama K., Kimura H. Molecular evolutionary analyses of the RNA-dependent RNA polymerase region in norovi-rus genogroup II. Front. Microbiol. 2018;9:3070. DOI 10.3389/fmicb.2018.03070.

27. Parra G.I., Squires R.B., Karangwa C.K., Johnson J.A., Lepore C., Sosnovtsev S.V, Green K.Y Static and evolving norovirus genotypes: implications for epidemiology and immunity. PLoS Pat-hog. 2017;13(1):e1006136. DOI 10.1371/journal.ppat.1006136.

28. Petrignani M., Verhoef L., de Graaf M., Richardus J.H., Koop-mans M. Chronic sequelae and severe complications of noro-virus infection: a systematic review of literature. J. Clin. Virol. 2018;105:1-10. DOI 10.1016/j.jcv.2018.05.004.

29. Qi R., Huang Y, Liu J., Sun Y, Sun X., Han H., Qin X., Zhao M., Wang L., Li W., Li J., Chen C., Yu X. Global prevalence of asymptomatic norovirus infection: a meta-analysis. EClinical Medicine. 2018;2(2-3):50-58. DOI 10.1016/j.eclinm.2018.09.001.

30. Roth A.N., Karst S.M. Norovirus mechanisms of immune antagonism. Curr. Opin. Virol. 2016;16:24-30. DOI 10.1016/j.coviro.2015.11.005.

31. Ruis C., Roy S., Brown J.R., Allen D.J., Goldstein R.A., Breuer J. The emerging GII.P16-GII.4 Sydney 2012 norovirus lineage is circulating worldwide, arose by late-2014 and contains polymerase changes that may increase virus transmission. PLoS One. 2017;12(6):e0179572. DOI 10.1371/journal.pone.0179572.

32. Simmons K., Gambhir M., Leon J., Lopman B. Duration of immunity to norovirus gastroenteritis. Emerg. Infect. Dis. 2013;19(8): 1260-1267. DOI 10.3201/eid1908.130472.

33. Towers S., Chen J., Cruz C., Melendez J., Rodriguez J., Salinas A., Yu F., Kang Y Quantifying the relative effects of environmental and direct transmission of norovirus. R. Soc. Open Sci. 2018; 5(3):170602. DOI 10.1098/rsos.170602.

34. van Beek J., Ambert-Balay K., Botteldoorn N., Eden J.S., Fona-ger J., Hewitt J., Iritani N., Kroneman A., Vennema H., Vinje J., White P.A., Koopmans M., on behalf of NoroNet. Indications for worldwide increased norovirus activity associated with emergence of a new variant of genotype II.4, late 2012. Eurosurveillance. 2013;18(1):pii=20345. Available online: https://www.eurosurveillance.org/content/10.2807/ese.18.01.20345-en.

35. Vinje J. Advances in laboratory methods for detection and typing of norovirus. J. Clin. Microbiol. 2015;53(2):373-381. DOI 10.1128/JCM.01535-14.

36. Vongpunsawad S., Venkataram Prasad B.V., Estes M.K. Norwalk virus minor capsid protein VP2 associates within the VP1 shell domain. J. Virol. 2013;87(9):4818-4825. DOI 10.1128/JVI.03508-12.

37. Woodward J., Gkrania-Klotsas E., Kumararatne D. Chronic norovirus infection and common variable immunodeficiency. Clin. Exp. Immunol. 2017;188(3):363-370. DOI 10.1111/cei.12884.

38. Zhirakovskaia E.V., Tikunov A.Y, Bodnev S.A., Klemesheva V V, Netesov S.V., Tikunova N.V. Molecular epidemiology of noro-viruses associated with sporadic gastroenteritis in children in Novosibirsk, Russia, 2003-2012. J. Med. Virol. 2015;87(5):740-753. DOI 10.1002/jmv.24068.

39. Zhirakovskaia E., Tikunov A., Tymentsev A., Sokolov S., Sedel-nikova D., Tikunova N. Changing pattern of prevalence and genetic diversity of rotavirus, norovirus, astrovirus, and boca-virus associated with childhood diarrhea in Asian Russia, 20092012. Infect. Genet. Evol. 2019;67:167-182. DOI 10.1016/j.meegid.2018.11.006.


Review

Views: 862


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)