1. Becker P.S.A., Suck G., Nowakowska P., Ullrich E., Seifried E., Bader P., Tonn T., Seidl C. Selection and expansion of natural killer cells for NK cell-based immunotherapy. Cancer Immunol. Immunother. 2016;65(4):477-484. https://doi.org/10.1007/s00262-016-1792-y.
2. Cerwenka A., Baron J.L., Lanier L.L. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc. Natl. Acad. Sci. USA. 2001;98(20):11521-11526. https://doi.org/10.1073/pnas.201238598.
3. Chang S.S. Overview of prostate-specific membrane antigen. Rev. Urol. 2004;6(Suppl.10):S13-S18.
4. Chester C., Fritsch K., Kohrt H.E. Natural killer cell immuno-modulation: targeting activating, inhibitory, and co-stimulatory receptor signaling for cancer immunotherapy. Front. Immunol. 2015;6:601. https://doi.org/10.3389/fimmu.2015.00601.
5. Childs R.W., Carlsten M. Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: the force awakens. Nat. Rev. Drug Discov. 2015;14:487. https://doi.org/10.1038/nrd4506.
6. De Charette M., Marabelle A., Houot R. Turning tumour cells into antigen presenting cells: the next step to improve cancer immunotherapy? Eur. J. Cancer. 2016;68:134-147. https://doi.org/10.1016/j.ejca.2016.09.010.
7. Deaglio S., Zubiaur M., Gregorini A., Bottarel F., Ausiello C.M., Dianzani U., Sancho J., Malavasi F. Human CD38 and CD16 are functionally dependent and physically associated in natural killer cells. Blood. 2002;99(7):2490-2498.
8. Del Zotto G., Marcenaro E., Vacca P., Sivori S., Pende D., Della Chiesa M., Moretta F., Ingegnere T., Mingari M.C., Moretta A., Moretta L. Markers and function of human NK cells in normal and pathological conditions. Cytometry B. Clin. Cytom. 2017; 92(2):100-114. https://doi.org/10.1002/cyto.b.21508.
9. Doench J.G., Fusi N., Sullender M., Hegde M., Vaimberg E.W., Donovan K.F., Smith I., Tothova Z., Wilen C., Orchard R., Virgin H.W., Listgarten J., Root D.E. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 2016;34(2):184-191. https://doi.org/10.1038/nbt.3437.
10. Edsparr K., Speetjens F.M., Mulder-Stapel A., Goldfarb R.H., Basse P.H., Lennernas B., Kuppen P. J.K., Albertsson P. Effects of IL-2 on MMP expression in freshly isolated human NK cells and the IL-2-independent NK cell line YT. J. Immunother. 2010;33(5): 475-481. https://doi.org/10.1097/CJI.0b013e3181d372a0.
11. Freund-Brown J., Chirino L., Kambayashi T. Strategies to enhance NK cell function for the treatment of tumors and infections. Crit. Rev. Immunol. 2018;38(2):105-130. https://doi.org/10.1615/CritRevImmunol.2018025248.
12. Golubovskaya V, Berahovich R., Zhou H., Xu S., Harto H., Li L., Chao C.C., Mao M.M., Wu L. CD47-CAR-T cells effectively kill target cancer cells and block pancreatic tumor growth. Cancers (Basel). 2017;9(10):139. https://doi.org/10.3390/cancers9100139. Gorchakov A.A., Kulemzin S.V., Kochneva G.V., Taranin A.V. Challenges and prospects of chimeric antigen receptor T-cell therapy for metastatic prostate cancer. Eur. Urol. 2019. https://doi.org/10.1016/j.eururo.2019.08.014.
13. Hanke T., Takizawa H., Mcmahon C.W., Busch D.H., Pamer E.G., Miller J.D., Altman J.D., Liu Y, Cado D., Lemonnier F.A., Bjorkman PJ., Raulet D.H. Direct assessment of MHC class I binding by seven Ly49 inhibitory NK cell receptors. Immunity. 1999;11(1):67-77. https://doi.org/10.1016/S1074-7613(00)80082-5.
14. Hewitt E.W. The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology. 2003;110(2):163-169. https://doi.org/10.1046/j.1365-2567.2003.01738.x.
15. Hood S.P., Foulds G.A., Imrie H., Reeder S., Mcardle S.E.B., Khan M., Pockley A.G. Phenotype and function of activated natural killer cells from patients with prostate cancer: patient-dependent responses to priming and IL-2 activation. Front. Immunol. 2019;9:3169. https://doi.org/10.3389/fimmu.2018.03169.
16. Igarashi T., Wynberg J., Srinivasan R., Becknell B., McCoy J.P., Takahashi Y, Suffredini D.A., Linehan W.M., Caligiuri M.A., Childs R.W. Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells. Blood. 2004; 104(1):170. https://doi.org/10.1182/blood-2003-12-4438.
17. Imai C., Iwamoto S., Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood. 2005;106(1):376-383. https://doi.org/10.1182/blood-2004-12-4797.
18. Ingegnere T., Mariotti F.R., Pelosi A., Quintarelli C., De Angelis B., Tumino N., Besi F., Cantoni C., Locatelli F., Vacca P., Moretta L. Human CAR NK cells: a new non-viral method allowing high efficient transfection and strong tumor cell killing. Front. Immunol. 2019;10:957. https://doi.org/10.3389/fimmu.2019.00957.
19. Karre K., Ljunggren H.G., Piontek G., Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986;319(6055):675-678. https://doi.org/10.1038/319675a0.
20. Kulemzin S.V, Matvienko D.A., Sabirov A.H., Sokratyan A.M., Chernikova D.S., Belovezhets T.N., Chikaev A.N., Taranin A.V, Gorchakov A.A. Design and analysis of stably integrated reporters for inducible transgene expression in human T cells and CAR NK-cell lines. BMC Med. Genomics. 2019;12(Suppl.2):44. https://doi.org/10.1186/s12920-019-0489-4.
21. Kutner R.H., Zhang X.-Y., Reiser J. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat. Protoc. 2009;4(4):495-505. https://doi.org/10.1038/nprot.2009.22.
22. Lee S.K., Gasser S. The role of natural killer cells in cancer therapy. Front. Biosci. (Elite Ed). 2010;2:380-391.
23. Malarkannan S. The balancing act: inhibitory Ly49 regulate NKG2D-mediated NK cell functions. Semin. Immunol. 2006; 18(3):186-192. https://doi.org/10.1016/j.smim.2006.04.002.
24. Mamessier E., Sylvain A., Thibult M.-L., Houvenaeghel G., Jac-quemier J., Castellano R., Gonęalves A., Andre P, Romagne F., Thibault G., Viens P, Birnbaum D., Bertucci F., Moretta A., Olive D. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J. Clin. Invest. 2011;121(9):3609-3622. https://doi.org/10.1172/JCI45816.
25. Moreno-Mateos M.A., Vejnar C.E., Beaudoin J.D., Fernandez J.P., Mis E.K., Khokha M.K., Giraldez A.J. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods. 2015;12(10):982-988. https://doi.org/10.1038/nmeth.3543.
26. Nayyar G., Chu Y, Cairo M.S. Overcoming resistance to natural killer cell based immunotherapies for solid tumors. Front. Oncol. 2019;9:51. https://doi.org/10.3389/fonc.2019.00051.
27. O’Doherty U., Swiggard W.J., Malim M.H. Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J. Virol. 2000;74(21):10074-10080. https://doi.org/10.1128/jvi.74.21.10074-10080.2000.
28. Pasero C., Gravis G., Granjeaud S., Guerin M., Thomassin-Pi-ana J., Rocchi P, Salem N., Walz J., Moretta A., Olive D. Highly effective NK cells are associated with good prognosis in patients with metastatic prostate cancer. Oncotarget. 2015;6(16):14360-14373. https://doi.org/10.18632/oncotarget.3965.
29. Pasero C., Gravis G., Guerin M., Granjeaud S., Thomassin-Pi-ana J., Rocchi P, Paciencia-Gros M., Poizat F., Bentobji M., Azario-Cheillan F., Walz J., Salem N., Brunelle S., Moretta A., Olive D. Inherent and tumor-driven immune tolerance in the prostate microenvironment impairs natural killer cell antitumor activity. Cancer Res. 2016;76(8):2153. https://doi.org/10.1158/0008-5472.CAN-15-1965.
30. Paul S., Lal G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front. Immunol. 2017;8:1124. https://doi.org/10.3389/fimmu.2017.01124.
31. Purdy A.K., Campbell K.S. SHP-2 expression negatively regulates NK cell function. J. Immunol. 2009;183(11):7234-7243. https://doi.org/10.4049/jimmunol.0900088.
32. Quintarelli C., Sivori S., Caruso S., Carlomagno S., Boffa I., Orlando D., Guercio M., Cembrola B., Pitisci A., Di Cecca S., Li Pira G., Vinti L., De Angelis B., Moretta L., Locatelli F. CD19 redirected CAR NK cells are equally effective but less toxic than CAR T cells. Blood. 2018;132(Suppl.1):3491. https://doi.org/10.1182/blood-2018-99-118005.
33. Rehman A.U., Rahman M.U., Khan M.T., Saud S., Liu H., Song D., Sultana P., Wadood A., Chen H.F. The landscape of protein tyrosine phosphatase (Shp2) and cancer. Curr. Pharm. Des. 2018;24(32):3767-3777. https://doi.org/10.2174/1381612824666181106100837.
34. Rezvani K., Rouce R., Liu E., Shpall E. Engineering natural killer cells for cancer immunotherapy. Mol. Ther. 2017;25(8):1769-1781. https://doi.org/10.1016/j.ymthe.2017.06.012.
35. Rusakiewicz S., Semeraro M., Sarabi M., Desbois M., Locher C., Mendez R., Vimond N., Concha A., Garrido F., Isambert N., Chaigneau L., Le Brun-Ly V, Dubreuil P, Cremer I., Caig-nard A., Poirier-Colame V, Chaba K., Flament C., Halama N., Jager D., Eggermont A., Bonvalot S., Commo F., Terrier P, Opolon P, Emile J.-F., Coindre J.- M., Kroemer G., Chaput N., Le Cesne A., Blay J.-Y, Zitvogel L. Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors. Cancer Res. 2013;73(12):3499. https://doi.org/10.1158/0008-5472.CAN-13-0371.
36. Sanjana N.E., Shalem O., Zhang F. Improved vectors and genomewide libraries for CRISPR screening. Nat. Methods. 2014;11(8): 783-784. https://doi.org/10.1038/nmeth.3047.
37. Sivori S., Vacca P, Del Zotto G., Munari E., Mingari M.C., Moret-ta L. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell. Mol. Immunol. 2019;16(5): 430-441. https://doi.org/10.1038/s41423-019-0206-4.
38. Suen W.C.W., Lee W.Y.W., Leung K.T., Pan X.H., Li G. Natural killer cell-based cancer immunotherapy: a review on 10 years completed clinical trials. Cancer Invest. 2018;36(8):431-457. https://doi.org/10.1080/07357907.2018.1515315.
39. Yang L., Shen M., Xu L.J., Yang X., Tsai Y., Keng PC., Chen Y, Lee S.O. Enhancing NK cell-mediated cytotoxicity to cispla-tin-resistant lung cancer cells via MEK/Erk signaling inhibition. Sci. Rep. 2017;7(1):7958. https://doi.org/10.1038/s41598-017-08483-z.
40. Yodoi J., Teshigawara K., Nikaido T., Fukui K., Noma T., Honjo T., Takigawa M., Sasaki M., Minato N., Tsudo M., Uchiyama T., Maeda M. TCGF (IL 2)-receptor inducing factor(s). I. Regulation of IL-2 receptor on a natural-killer-like cell-line (YT-cells). J. Immunol. 1985;134(3):1623-1630.
41. Yusa S.-I., Campbell K.S. Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2) can play a direct role in the inhibitory function of killer cell Ig-like receptors in human NK cells. J. Immunol. 2003;170(9):4539. https://doi.org/10.4049/jimmunol.170.9.4539.