The relationship of the carriership of allelic variations in rs2228145 (A > C) of theIL6R gene with the levels of VCAM1 and ICAM1 gene transcripts in patients with essential hypertension
https://doi.org/10.18699/VJ20.600
Abstract
The levels of plasma interleukin 6 and its soluble receptors were found to be elevated in subjects with cardiovascular diseases, which points to amplification of the IL-6-mediated trans-signaling pathway in cells and the development of chronic inflammation. The allelic variation in the rs2228145 IL6R gene is associated with a change in the contents of the soluble and membrane-bound receptor forms mediating the biological activity of IL-6. Cytokine IL-6 is involved in the development of endothelial dysfunction by regulating the expression of the VCAM1 and ICAM1 genes, encoding intercellular adhesion molecules. Prior to this work, no data on the association of essential arterial hypertension (EAH) with rs2228145 allelic variations of the IL6R gene have been reported.
The aim of our work was to study the relationship of the carriership of rs2228145 (A > C) allelic variations with the development of EAH and the VCAM1 and ICAM1 transcript levels. We analyzed samples of DNA isolated from the whole blood of 148 healthy donors and 152 patients with EAH (stages I-II). The genotyp-ing was performed by PCR-RFLP. The level of transcripts in peripheral blood leukocytes (PBL) was assessed by real-time PCR. Differences in the frequency distributions of rs2228145 (A > C) genotypes between the control group and the group of patients with EAH (χ2 = 9.303) were found. The frequency of the CC genotype in EAH patients was higher than in healthy people (0.191 and 0.095, respectively). The risk of EAH (I-II stages) development was shown to be 2.3 times higher in CC genotype carriers as compared to individuals with other genotypes (OR = 2.257, 95 % confidence interval 1.100-4.468). The levels of VCAM1 and ICAM1 gene transcripts in PBL of patients with EAH were significantly higher than in healthy people. The level of ICAM1 gene transcripts was almost 4 times higher in patients with CC genotype. The Kruskal-Wallis analysis of variance revealed an effect of rs2228145 (A > C) genotype on the transcriptional activity of ICAM1, which argues for its role in the pathogenesis of endothelial dysfunction and essential hypertension.
About the Authors
L. V. TopchievaRussian Federation
Petrozavodsk
V. A. Korneva
Russian Federation
I. V. Kurbatova
Russian Federation
Petrozavodsk
References
1. Bautista L.E., Vera L.M., Arenas I.A., Gamarra G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-a) and essential hypertension. J. Hum. Hypert. 2005; 19:149-154.
2. Belokopytova I.S., Moskaletz O.V, Paleev F.N., Zotova O.V. The diagnostic value of adhesive molecules sICAM-1 and sVCAM-1 in ischemic heart disease. Ateroskleroz i Dislipidemii = Atherosclerosis and Dyslipidemia. 2013;4:62-65. (in Russian)
3. Cook-Mills J.M., Marchese M.E., Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid. Redox Signal. 2011;15(6):1607-1638. DOI 10.1089/ars.2010.3522.
4. Diagnosis and treatment of hypertension. Russian recommendations (Fourth revision). (Russian Medical Society on Arterial Hypertension; Russian Scientific Society of Cardiology). Sistemnye Giper-tenzii = Systemic Hypertension. 2010;3:5-26. (in Russian)
5. Didion S.P. Cellular and oxidative mechanisms associated with interleukin-6 signaling in the vasculature. Int. J. Mol. Sci. 2017;18(2563). DOI 10.3390/ijms18122563.
6. Ferreira R.C., Freitag D.F., Cutler A.J., Howson J.M., Rainbow D.B., Smyth D.J., Kaptoge S., Clarke P., Boreham C., Coulson R.M., Pekalski M.L., Chen W.M., Onengut-Gumuscu S., Rich S.S., But-terworth A.S., Malarstig A., Danesh J., Todd J.A. Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genet. 2013;9(4): e1003444. DOI 10.1371/journal.pgen.1003444.
7. Fletcher R., Fletcher S., Wagner E. Clinical Epidemiology. The essentials. Baltimore [etc.]: Williams & Wilkins: A Waverly Company, 1996. (Russ. ed. Fletcher R., Fletcher S., Vagner E. Klinicheskaya epidemiologiya: osnovy dokazatelnoy meditsiny. Moscow, 1998.) Gaillard J., Pugniere M., Tresca J., Mani J., Klein B., Brochier J. Interleukin-6 receptor signaling. II. Bio-availability of interleukin-6 in serum. Eur. Cytokine Netw. 1999;10(3):337-344.
8. Galicia J.C., Tai H., Komatsu Y., Shimada Y., Akazawa K., Yoshie H. Polymorphisms in the IL-6 receptor (IL-6R) gene: strong evidence that serum levels of soluble IL-6R are genetically influenced. Genes Immun. 2004;5:513-516. DOI 10.1038/sj.gene.6364120.
9. Galkina E., Ley K. Vascular adhesion molecules in atherosclerosis. Ar-terioscler. Thromb. Vasc. Biol. 2007;27:2292-2301. DOI 10.1161/ATVBAHA.107.149179.
10. Jiang C.Q., Lam T.H., Liu B., Lin J.M., Yue X.J., Jin Y.L., Cheug B.M.Y., Thomas G.N. Interleukin-6 receptor gene polymorphism modulates interleukin-6 levels and the metabolic syndrome: GBCS-CVD. Obesity. 2010;18(10):1969-1974. DOI 10.1038/oby.2010.31.
11. Kato G.J., Martyr S., Blackwelder W.C., Nichols J.S., Coles W.A., Hunter L.A., Brennan M., Hazen S.L., Gladwin M.T. Levels of sol uble endothelium-derived adhesion molecules in patients with sickle cell disease are associated with pulmonary hypertension, organ dysfunction, and mortality. Br. J. Haematol. 2005;130(6): 943-953.
12. Kim S.K., Park K.Y., Yoon W.C., Park S.H., Park K.K. Mellitin enhances apoptosis through suppression of IL-6/sIL-6R complex-induced NF-kB and STAT3 activation and Bcl-2 expression for human fibroblast-like synoviocytes in rheumatoid arthritis. Joint Bone Spine. 2011;78:471-477. DOI 10.1016/j.jbspin.2011.01.004.
13. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-aact method. Methods. 2001;25(4):402-408. DOI 10.1006/meth.2001.1262.
14. Moss J.W.E., Ramji D.P. Cytokines: roles in atherosclerosis disease progression and potential therapeutic targets. Future Med. Chem. 2016;8(11):1317-1330. DOI 10.4155/fme-2016-0072.
15. Nakahara H., Song J., Sugimoto M., Hagihara K., Kishimoto T., Yoshizaki K., Nishimoto N. Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum. 2003;48(6):1521-1529.
16. Pinto J.P., Dias V, Zoller H., Porto G., Carmo H., Carvalho F., de Sousa M. Hepcidin messenger RNA expression in human lymphocytes. Immunology. 2010;130(2):217-230. DOI 10.1111/j.1365-2567.2009.03226.x.
17. Rafiq S., Frayling T.M., Murray A., Hurst A., Stevens K., Weedon M.N., Henley W., Ferrucci L., Bandinelli S., Corsi A.M., Guralnik J.M., Melzer D. A common variant ofthe interleukin 6 receptor (IL-6r) gene increases IL-6r and IL-6 levels, without other inflammatory effects. Genes Immun. 2007;8:552-559. DOI 10.1038/sj.gene.6364414.
18. Rajan S., Ye J., Bai S., Huang F., Guo Y.-L. NF-kB, but not p38 MAP kinase, is required for TNF-a-induced expression of cell adhesion molecules in endothelial cells. J. Cell Biochem. 2008;105(2):477-486. DOI 10.1002/jcb.21845.
19. Sarwar N., Butterworth A.S., Freitag D.F., Gregson J., Willeit P., Gorman D.N., Gao P., ... Samani N.J., Kaptoge S., Di Angelantonio E., Harari O., Danesh J. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet. 2012;379:1205-1213. DOI 10.1016/S0140-6736(11)61931-4.
20. Sprague A.H., Khalil R.A. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem. Pharmacol. 2009;78(6):539-552. DOI 10.1016/j.bcp.2009.04.029.
21. The Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomization analysis. Lancet. 2012;379(9822):1214-1224. DOI 10.1016/S0140-6736(11)61931-4.
22. Virdis A., Dell’Agnello U., Taddei S. Impact of inflammation on vascular disease in hypertension. Maturitas. 2014;78(3):179-183. DOI 10.1016/j.maturitas.2014.04.012.
23. Wang Y., Nie W., Yao K., Wang Z., He H. Interleukin 6 induces expression of NADPH oxidase 2 in human aortic endothelial cells via long noncoding RNA MALAT1. Pharmazie. 2016;71(10):592-597. DOI 10.1691/ph.2016.6598.
24. Wei Z., Jiang W., Wang H., Li H., Tang B., Liu B., Jiang H., Sun X. The IL-6/STAT3 pathway regulates adhesion molecules and cytoskeleton of endothelial cells in thromboangiitis obliterans. Cell. Signal. 2018; 44:118-126. DOI m.1016/j.cellsig.2018.01.015.
25. Weiss T.W., Arnesen H., Seljeflot I. Components of interleukin-6 transsignaling system are associated with the metabolic syndrome, endothelial dysfunction and arterial stiffnes. Metab. Clin. Exp. 2013;62: 1008-1013. DOI 10.1016/j.metabol.2013.01.019.
26. Wenzel P., Knorr M., Kossmann S., Stratmann J., Hausding M., Schuh-macher S., Karbach S.H., Schwenk M., Yogev N., Schulz E., Oelze M., Grabbe S., Jonuleit H., Becker C., Daiber A., Waisman A., Munzel T. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation. 2011;124(12):1370-1381. DOI 10.1161/CIRCULATIONAHA.111.034470.
27. Wolf J., Rose-John S., Garbers C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine. 2014;70:11-20. DOI 10.1016/j.cyto.2014.05.024.