Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Коэкспрессия глутаматергических генов и генов аутистического спектра в гиппокампе у самцов мышей с нарушением социального поведения

https://doi.org/10.18699/VJ20.42-o

Полный текст:

Аннотация

В настоящее время существует представление о вовлеченности глутаматергической системы в механизмы развития аутизма. В предыдущих исследованиях нами было показано, что негативный социальный опыт, приобретенный в ежедневных межсамцовых конфронтациях, приводит к нарушениям в социальном поведении: снижению коммуникативности, нарушению социализации, появлению стереотипных форм поведения, которые могут рассматриваться как симптомы аутистического спектра. В связи с этим целью нашей работы было изучение с помощью транскриптомного анализа изменений экспрессии генов, кодирующих белки, вовлеченные в функционирование глутаматергической системы (ГГ), и генов, связанных с патологией аутизма (ГА), в гиппокампе. В эксперименте использовали животных с нарушениями социального поведения, вызванными повторным опытом социальных побед или поражений в ежедневных агонистических взаимодействиях. Для формирования групп животных с контрастными типами поведения использовали модель сенсорного контакта (хронического социального стресса). Полученные образцы мозга были секвенированы в ЗАО «Геноаналитика» (http://genoanalytica.ru/,, Россия, Москва). Транскриптомный анализ показал, что у агрессивных животных снижается экспрессия генов Shank3, Auts2, Ctnnd2, Nrxn2, для которых показано участие в развитии аутизма, а также глутаматергического гена Grm4. В то же время у животных с негативным социальным опытом экспрессия ГА Shank2, Nlgn2, Ptcdh10, Reln, Arx возрастает. При этом ГГ (Grik3, Grm2, Grm4, Slc17a7, Slc1a4, Slc25a22), за исключением гена Grin2a, повышают свою экспрессию. Корреляционный анализ выявил статистически значимую взаимосвязь измененной экспрессии ГГ и ГА. Полученные результаты, с одной стороны, могут служить подтверждением участия глутаматергической системы в патофизиологии развития симптомов аутистического спектра, с другой – свидетельствовать о коэкспрессии ГГ и ГА в гиппокампе, развивающейся под влиянием социальной среды. Так как подавляющее большинство ГА, изменивших экспрессию в настоящем исследовании, являются генами, связанными с клеточным скелетом и внеклеточным матриксом, в частности участвующими в формировании синапсов, а ГГ, изменившие свою экспрессию, – генами, кодирующими субъединицы рецепторов, то можно предположить, что вовлечение ГГ в патофизиологию аутизма происходит на уровне рецепторов.

Об авторах

И. Л. Коваленко
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


А. Г. Галямина
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


Д. А. Смагин
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


Н. Н. Кудрявцева
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


Список литературы

1. Галямина А.Г., Коваленко И.Л., Смагин Д.А., Кудрявцева Н.Н. Изменение экспрессии генов нейромедиаторных систем в вентральной тегментальной области депрессивных мышей: данные RNA-Seq. Журн. высш. нервн. деят. им. И.П. Павлова. 2017; 67(1):113-128. DOI 10.7868/S0044467717010063

2. Коваленко И.Л., Кудрявцева Н.Н. Развитие симптомов аутистического спектра под влиянием хронического социального стресса у тревожных самцов мышей: эффекты диазепама. Психофармакол. биол. наркология. 2010;10(1-2):2624-2635.

3. American Psychiatric Association. DSM-IV Draft Criteria. Washington, DC, American Psychiatric Press, 1993.

4. Anitha A., Thanseem I., Nakamura K., Yamada K., Iwayama Y., Toyota T., Iwata Y., Suzuki K., Sugiyama T., Tsujii M., Yoshikawa T., Mori N. Protocadherin α (PCDHA) as a novel susceptibility gene for autism. J. Psychiatry Neurosci. 2013;38(3):192-198. DOI 10.1503/jpn.120058.

5. Arons M.H., Thynne C.J., Grabrucker A.M., Li D., Schoen M., Cheyne J.E., Boeckers T.M., Montgomery J.M., Garner C.C.J. Autismassociated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin-neuroligin-mediated transsynaptic signaling. J. Neurosci. 2012;32(43):14966-14978. DOI 10.1523/JNEUROSCI.2215-12.2012.

6. Babenko V.N., Smagin D.A., Kudryavtseva N.N. RNA-Seq mouse brain regions expression data analysis: Focus on ApoE functional network. J. Integr. Bioinform. 2017;14(3):20170024. DOI 10.1515/jib-2017-0024.

7. Bauman M.L., Kemper T.L. Neuroanatomic observations of the brain in autism: a review and future directions. Int. J. Dev. Neurosci. 2005; 23(2-3):183-187. DOI 10.1016/j.ijdevneu.2004.09.006.

8. Beguin S., Crépel V., Aniksztejn L., Becq H., Pelosi B., Pallesi-Pocachard E., Bouamrane L., Pasqualetti M., Kitamura K., Cardoso C., Represa A. An epilepsy-related ARX polyalanine expansion modifies glutamatergic neurons excitability and morphology without affecting GABAergic neurons development. Cereb. Cortex. 2013; 23(6):1484-1494. DOI 10.1093/cercor/bhs138.

9. Berton O., McClung C.A., Dileone R.J., Krishnan V., Renthal W., Russo S.J., Graham D., Tsankova N.M., Bolanos C.A., Rios M., Monteggia L.M., Self D.W., Nestler E.J. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. 2006;311:864-886. DOI 10.1126/science.1120972.

10. Сarlsson M. Autism and glutamate. In: Fatemi S.H. (Ed.). The Molecular Basis of Autism. New York: Springer, 2015;243-256.

11. Chen W.V., Alvarez F.J., Lefebvre J.L., Friedman B., Nwakeze C., Geiman E., Smith C., Thu C.A., Tapia J.C., Tasic B., Sanes J.R., Maniatis T. Functional significance of isoform diversification in the protocadherin-gamma gene cluster. Neuron. 2012;75(3):402-409. DOI 10.1016/j.neuron.2012.06.039.

12. Chih B., Engelman H., Scheiffele P. Control of excitatory and inhibitory synapse formation by neuroligins. Science. 2005;307:1324-1328. DOI 10.1126/science.1107470.

13. DeLong G.R. Autism, amnesia, hippocampus, and learning. Neurosci. Biobehav. Rev. 1992;16:63-70.

14. Faure A., Richard J.M., Berridge K.C. Desire and dread from the nucleus accumbens: cortical glutamate and subcortical GABA differentially generate motivation and hedonic impact in the rat. PLoS One. 2010;5(6):e11223. DOI 10.1371/journal.pone.0011223.

15. Graf E.R., Zhang X., Jin S.X., Linhoff M.W., Craig A.M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell. 2004;119(7):1013-1026. DOI 10.1016/j.cell.2004.11.035.

16. Groc L., Choquet D., Stephenson F.A., Verrier D., Manzoni O.J., Chavis P. NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein reelin. J. Neurosci. 2007;27(38):10165-10175. DOI 10.1523/JNEUROSCI.1772-07.2007.

17. Hallmayer J., Cleveland S., Torres A., Phillips J., Cohen B., Torigoe T., Miller J., Fedele A., Collins J., Smith K., Lotspeich L., Croen L.A., Ozonoff S., Lajonchere C., Grether J.K., Risch N. Genetic heritability and shared environmental factors among twin pairs with autism. Arch. Gen. Psychiatry. 2011;68(11):1095-1102. DOI 10.1001/archgenpsychiatry.2011.76.

18. Hori K., Nagai T., Shan W., Sakamoto A., Taya S., Hashimoto R., Hayashi T., Abe M., Yamazaki M., Nakao K., Nishioka T., Sakimura K., Yamada K., Kaibuchi K., Hoshino M. Cytoskeletal regulation by AUTS2 in neuronal migration and neuritogenesis. Cell Rep. 2014;9(6):2166-2179. DOI 10.1016/j.celrep.2014.11.045.

19. Irle E., Ruhleder M., Lange C., Seidler-Brandler U., Salzer S., Dechent P., Weniger G., Leibing E., Leichsenring F. Reduced amygdalar and hippocampal size in adults with generalized social phobia. J. Psychiatry Neurosci. 2010;35:126-131.

20. Jamain S., Betancur C., Quash H. Linkage and association of the glutamate receptor 6 gene with autism. Paris autism research international sibpair [PARIS] study. Mol. Psychiatry. 2002;7(3):302-310.

21. Kadakkuzha B.M., Liu X.A., McCrate J., Shankar G., Rizzo V., Afinogenova A., Young B., Fallahi M., Carvalloza A.C., Raveendra B., Puthanveettil S.V. Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations. Front. Cell. Neurosci. 2015;9:63. DOI 10.3389/fncel.2015.00063.

22. Kleijer K.T., Schmeisser M.J., Krueger D.D., Boeckers T.M., Scheiffele P., Bourgeron T., Brose N., Burbach J.P. Neurobiology of autism gene products: towards pathogenesis and drug targets. Psychopharmacology (Berl.). 2014;231(6):1037-1062. DOI 10.1007/s00213-013-3403-3.

23. Kudryavtseva N.N. A sensory contact model for the study of aggressive and submissive behavior in male mice. Aggress. Behav. 1991; 17(5):285-291. DOI 10.1007/s00210-018-1580-7.

24. Kudryavtseva N.N. The psychopathology of repeated aggression: a neurobiological aspect. In: Morgan J.P. (Ed.). Perspectives on the Psychology of Aggression. New York: Nova Science Publishers, 2006;35-64.

25. Kudryavtseva N.N., Avgustinovich D.F., Bakshtanovskaya I.V., Koryakina L.A., Alekseyenko O.V., Lipina T.V., Bondar N.P. Experimental studies of hereditary predisposition to the development of depression. In: Kalueff A. (Ed.). Animal Models of Biological Psychiatry. New York: Nova Science Publishers, 2006;75-95.

26. Kudryavtseva N.N., Kovalenko I.L., Smagin D.A., Galyamina A.G., Babenko V.N. Abnormality of social behavior and dysfunction of autism related gene expression developing under chronic social defeat stress in male mice. Eur. Neuropsychopharm. 2017;27(4):S678- S679.

27. Kudryavtseva N.N., Smagin D.A., Kovalenko I.L., Vishnivetskaya G.B. Protocol for repeated positive fighting experience in male mice: the tool for the study of movementdisorders. Nature Protoc. 2014;9(11): 2705-2717.

28. Lee E.J., Choi S.Y., Kim E.NMDA receptor dysfunction in autism spectrum disorders. Curr. Opin. Pharmacol. 2015;20:8-13. DOI 10.1016/j.coph.2014.10.007.

29. Liu Y., Zhao D., Dong R., Yang X., Zhang Y., Tammimies K., Uddin M., Scherer S.W., Gai Z. De novo exon1 deletion of AUTS2 gene in a patient with autism spectrum disorder and developmental delay: a case report and a brief literature review. Am. J. Med. Genet. A. 2015;167(6):1381-1385. DOI 10.1002/ajmg.a.37050.

30. Maćkowiak M., Mordalska P., Wędzony K. Neuroligins, synapse balance and neuropsychiatric disorders. Pharmacol. Rep. 2014;66: 830-835. DOI 10.1016/j.pharep.2014.04.011.

31. Meyer G., Varoqueaux F., Neeb A., Oschlies M., Brose N. The complexity of PDZ domain-mediated interactions at glutamatergic synapses: a case study on neuroligin. Neuropharmacology. 2004;47:724- 733. DOI 10.1016/j.neuropharm.2004.06.023.

32. Miles J.H. Autism spectrum disorders, a genetics review. Genet. Med. 2011;13(4):278-294. DOI 10.1097/GIM.0b013e3181ff67ba.

33. Moessner R., Marshall C.R., Sutcliffe J.S., Skaug J., Pinto D., Vincent J., Zwaigenbaum L., Fernandez B., Roberts W., Szatmari P., Scherer S.W. Contribution of SHANK3 mutations to autism spectrum disorder. Am. J. Hum. Genet. 2007;81:1289-1297. DOI 10.1086/522590.

34. Morgane P.J., Galler J.R., Mokler D.J. A review of systems and networks of the limbicforebrain/limbicmidbrain. Prog. Neurobiol. 2005;75(2):143-160. DOI 10.1016/j.pneurobio.2005.01.001.

35. Oksenberg N., Stevison L., Wall J.D., Ahituv N. Function and regulation of AUTS2, a gene implicated in autism and human evolution. PLoS Genet. 2013;9(1):e1003221. DOI 10.1371/journal.pgen.1003221.

36. Pavăl D.A. Dopamine hypothesis of autism spectrum disorder. Dev. Neurosci. 2017;39(5):355-360. DOI 10.1159/000478725.

37. Peça J., Feliciano C., Ting J.T., Wang W., Wells M.F., Venkatraman T.N., Lascola C.D., Fu Z., Feng G. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011; 472(7344):437-442. DOI 10.1038/nature09965.

38. Persico A.M., D’Agruma L., Maiorano N., Totaro A., Militerni R., Bravaccio C., Wassink T.H., Schneider C., Melmed R., Trillo S., Montecchi F., Palermo M., Pascucci T., Puglisi-Allegra S., Reichelt K.L., Conciatori M., Marino R., Quattrocchi C.C., Baldi A., Zelante L., Gasparini P., Keller F.; Collaborative Linkage Study of Autism. Reelin gene alleles and haplotypes as a fact or predisposing to autistic disorder. Mol. Psychiatry. 2001;6(2):150-159. DOI 10.1038/sj.mp.4000850.

39. Puller C., Haverkamp S. Cell-type-specific localization of protocadherin β16 at AMPA and AMPA/Kainate receptor-containing synapses in the primate retina. J. Comp. Neurol. 2011;519(3):467-479. DOI 10.3233/DMA-2012-0917.

40. Purcell A.E., Jeon O.H., Pevsner J. The abnormal regulation of gene expression in autistic brain tissue. J. Autism Dev. Disord. 2001;31(6): 545-549.

41. Ragunath P.K., Chitra R., Mohammad S., Abhinand P.A. A systems biological study on the comorbidity of autism spectrum disorders and bipolar disorder. Bioinformation. 2011;7(3):102-106.

42. Ramoz N., Reichert J.G., Smith C.J., Silverman J.M., Bespalova I.N., Davis K.L., Buxbaum J.D. Linkage and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism. Am. J. Psychiatry. 2004;161(4):662-669. DOI 10.1176/appi.ajp.161.4.662.

43. Riedel G., Platt B., Micheau J. Glutamate receptorfunction in learning and memory. Behav. Brain Res. 2003;140(1-2):1-47.

44. Røjas D.C. The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment. J. Neural. Transm. (Vienna). 2014;121(8):891-905. DOI 10.1007/s00702-014-1216-0.

45. Savitz J.B., Drevets W.C. Imaging phenotypes of major depressive disorder: genetic correlates. Neuroscience. 2009;164:300-330. DOI 10.1016/j.neuroscience.2009.03.082.

46. Simonyi A., Schachtman T.R., Christoffersen G.R. Metabotropic glutamate receptor subtype 5 antagonism in learning and memory. Eur. J. Pharmacol. 2010;639(1-3):17-25. DOI 10.1016/j.ejphar.2009.12.039.

47. Smagin D.A., Boyarskikh U.A., Bondar N.P., Filipenko M.L., Kudryavtseva N.N. Reduction of serotonergic gene expression in the midbrain raphe nuclei under positive fighting experience. Adv. Biosci. Biotechnol. 2013;4(10B):36-44. DOI 10.4236/abb.2013.410A3005.

48. Turner T.N., Sharma K., Oh E.C., Liu Y.P., Collins R.L., Sosa M.X., Auer D.R., Brand H., Sanders S.J., Moreno-De-Luca D., Pihur V., Plona T., Pike K., Soppet D.R., Smith M.W., Cheung S.W., Martin C.L., State M.W., Talkowski M.E., Cook E., Huganir R., Katsanis N., Chakravarti A. Loss of δ-catenin function in severe autism. Nature. 2015;520(7545):51-56. DOI 10.1038/nature14186.

49. Vaags A.K., Lionel A.C., Sato D., Goodenberger M., Stein Q.P., Curran S., Ogilvie C., Ahn J.W., Drmic I., Senman L., Chrysler C., Thompson A., Russell C., Prasad A., Walker S., Pinto D., Marshall C.R., Stavropoulos D.J., Zwaigenbaum L., Fernandez B.A., Fombonne E., Bolton P.F., Collier D.A., Hodge J., Roberts W., Szatmari P., Scherer S.W. Rare deletions at the neurexin 3 locus in autism spectrum disorder. Am. J. Hum. Genet. 2012;90(1):133-141. DOI 10.1016/j.ajhg.2011.11.025.

50. Wall D.P., Esteban F.J., Deluca T.F., Huyck M., Monaghan T., Velez de Mendizabal N., Goñí J., Kohane I.S. Comparative analysis of neurological disorders focuses genome-wide search for autism genes. Genomics. 2009;93(2):120-129. DOI 10.1016/j.ygeno.2008.09.015.

51. Wang X., McCoy P.A., Rodriguiz R.M., Pan Y., Je H.S., Roberts A.C., Kim C.J., Berrios J., Colvin J.S., Bousquet-Moore D., Lorenzo I., Wu G., Weinberg R.J., Ehlers M.D., Philpot B.D., Beaudet A.L., Wetsel W.C., Jiang Y.H. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum. Mol. Genet. 2011;20:3093-3108. DOI 10.1093/hmg/ddr212.

52. Won H., Lee H.R., Gee H.Y., Mah W., Kim J.I., Lee J., Ha S., Chung C., Jung E.S., Cho Y.S., Park S.G., Lee J.S., Lee K., Kim D., Bae Y.C., Kaang B.K., Lee M.G., Kim E. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature. 2012;486:261-265. DOI 10.1038/nature11208.

53. Zablotsky B., Black L.I., Maenner M.J., Schieve L.A., Blumberg S.J. Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 national health interview survey. Natl. Health Stat. Report. 2015;87:1-20.

54. Zhang Y., Chen K., Sloan S.A., Bennett M.L., Scholze A.R., O’Keeffe S., Phatnani H.P., Guarnieri P., Caneda C., Ruderisch N., Deng S., Liddelow S.A., Zhang C., Daneman R., Maniatis T., Barres B.A., Wu J.Q. An RNA-sequence and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 2014;34(36): 11929-11947. DOI 10.1523/JNEUROSCI.1860-14.2014.

55. Zheng C., Zhu Q., Liu X., Huang X., He C., Jiang L., Quan D., Zhou X., Zhu Z. Effect of platelet-rich plasma (PRP) concentration on proliferation, neurotrophic function and migration of Schwann cells in vitro. J. Tissue Eng. Regen. Med. 2016;10(5):428-436. DOI 10.1002/term.175.


Просмотров: 59


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)