Preview

Vavilov Journal of Genetics and Breeding

Advanced search

REVALENCE AND GENOTYPIC DIVERSITY OF THE SYMBIOTIC BACTERIUM WOLBACHIA IN THE DROSOPHILA MELANOGASTER POPULATION OF NALCHIK

Abstract

The symbiotic bacterium Wolbachia is widespread in natural Drosophila melanogaster populations. Its frequency in D. melanogaster populations is broadly variable from occasional individuals to total infestation. Six genotypes are recognized in this symbiont: wMel, wMel2, wMel3, wMel4, wMelCS, and wMelCS2. Two of them are ubiquitous: wMel and wMelCS. Others occur either in local areas or in laboratory stocks. In spite of the studies of Wolbachia occurrence in D. melanogaster populations of the world, the information of its prevalence and genotypic diversity in Eurasian populations is still scarce. We analyze the prevalence and genotypic diversity of Wolbachia in the natural D. melanogaster population of the city of Nalchik. It is shown that the genotypic composition of Wolbachia and its frequency in the population have remained stable for four years. Two genotypes are present in the population: wMel and wMelCS, the former being predominant. We found no other Wolbachia genotypes in the Nalchik D. melanogaster population. 

About the Authors

R. A. Bykov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation




Yu. Yu. Ilinskii
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research University, Novosibirsk, Russia
Russian Federation


M. A. Voloshina
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research University, Novosibirsk, Russia
Russian Federation


I. K. Zakharov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research University, Novosibirsk, Russia
Russian Federation


References

1. Илинский Ю.Ю. Эндосимбионт Wolbachia в природных популяциях Drosophila melanogaster Северной Евразии: Дис. ... канд. биол. наук. Новосибирск: ИЦиГ СО РАН, 2008. 154 с.

2. Илинский Ю.Ю., Захаров И.К. Характеристика инфици- рованности цитоплазматическим эндосимбионтом Wolbachia популяции Drosophila melanogaster Умани // Докл. АН. 2007а. Т. 413. No 4. С. 561–563.

3. Илинский Ю.Ю., Захаров И.К. Эндосимбионт Wolbachia в евразийских популяциях Drosophila melanogaster // Генетика. 2007б. Т. 43. No 7. С. 905–915.

4. Hilgenboecker K., Hammerstein P., Schlattmann P., Telschow A., Werren J.H. How many species are infected with Wol- bachia? – A statistical analysis of current data // FEMS Microbiol. Lett. 2008. V. 281. P. 215–220.

5. Hoffmann A.A., Clancy D.J., Merton E. Cytoplasmic incom-patibility in Australian populations of Drosophila mela- nogaster // Genetics. 1994. V. 136. P. 993–999.

6. Hoffmann A.A., Hercus M., Dagher H. Population dynamics of the Wolbachia infection causing cytoplasmic incompatibi- lity in Drosophila melanogaster // Genetics. 1998. V. 148. P. 221–231.

7. Ilinsky Y. Coevolution of Drosophila melanogaster mtDNA and Wolbachia genotypes // PLoS ONE. 2013. V. 8. No. 1. e54373.

8. Ilinsky Y., Zakharov I.K. Genetic correlation between types of mtDNA of Drosophila melanogaster and genotypes of its primary endosymbiont, Wolbachia // Drosophila Inf. Serv. 2006. V. 89. P. 89–91.

9. Marmur J. A procedure for the isolation of deoxyribonucleic acid from microorganisms // J. Mol. Biol. 1961. V. 3. P. 208–218.

10. Nunes M.D.S., Nolte V., Schlotterer C. Nonrandom Wolbachia infection status of Drosophila melanogaster strains with different mtDNA haplotypes // Mol. Biol. Evol. 2008. V. 25. Nо. 11. P. 2493–2498.

11. Richardson M.F., Weinert L.A., Welch J.J., Linheiro R.S., Magwire M.M. et al. Population genomics of the Wolba- chia еndosymbiont in Drosophila melanogaster // PLoS Genet. 2012. V. 8. Nо. 12. e1003129.

12. Riegler M., Sidhu M., Miller W.J., O’Neill S.L. Evidence for a global Wolbachia replacement in Drosophila melanogaster // Curr. Biol. 2005. V. 15. P. 1428–1433.

13. Riegler M., Iturbe-Ormaetxe I., Woolfit M., Miller W.J., O’Neill S.L. Tandem repeat markers as novel diagnostic tools for high resolution fingerprinting of Wolbachia // BMC Microbiol. 2012. V. 12. Suppl. 1. S. 12.

14. Solignac M., Vautrin D., Rousset F. Widespread occurrence of the proteobacteria Wolbachia and partial cytoplasmic incompatibility in Drosophila melanogaster // C. R. Acad. Sci. Paris. 1994. V. 317. P. 461–470.

15. Verspoor R.L., Haddrill P.R. Genetic diversity, population structure and Wolbachia infection status in a worldwide sample of Drosophila melanogaster and D. simulans popu- lations // PLoS ONE. 2011. V. 6. No. 10. e26318.

16. Werren J.H., Windsor D., Guo L.R. Distribution of Wolbachia among neotropical arthropods // Proc. R. Soc. Lond. B. 1995. V. 262. P. 197–204.

17. Zhou W., Rousset F., O’Neil S. Phylogeny and pcr-based clas- sification of Wolbachia strains using wsp gene sequences // Proc. Biol. Sci. 1998. V. 265. P. 509–515.

18. Zug R., Hammerstein P. Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40 % of terrestrial arthropod species are infected // PLoS ONE. 2012. V. 7. No. 6. e38544.


Review

Views: 716


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)